Plant calcium oxalate crystal formation, function, and its impact on human health

Paul A. NAKATA

PDF(471 KB)
PDF(471 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (3) : 254-266. DOI: 10.1007/s11515-012-1224-0
REVIEW
REVIEW

Plant calcium oxalate crystal formation, function, and its impact on human health

Author information +
History +

Abstract

Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high-capacity calcium regulation, protection against herbivory, and tolerance to heavy metals. Using a variety of experimental approaches researchers have begun to unravel the complex mechanisms controlling formation of this biomineral. Given the important roles for calcium oxalate formation in plant survival and the antinutrient and pathological impact on human health through its presence in plant foods, researchers are avidly seeking a more comprehensive understanding of how these crystals form. Such an understanding will be useful in efforts to design strategies aimed at improving the nutritional quality and production of plant foods.

Keywords

calcium / oxalate / crystals / biomineral / idioblast / nutrition

Cite this article

Download citation ▾
Paul A. NAKATA. Plant calcium oxalate crystal formation, function, and its impact on human health. Front Biol, 2012, 7(3): 254‒266 https://doi.org/10.1007/s11515-012-1224-0

References

[1]
Ahmed A K, Johnson K A (2000). The effect of the ammonium: nitrate nitrogen ration, total nitrogen, salinity (NaCl) and calcium on oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J Hortic Sci Biotechnol, 75: 533–538
[2]
Arnott H J, Pautard F G E (1970). Calcification in plants. In: Biological Calcification: Cellular and Molecular Aspects (Schraer H, Ed.). New York: Appleton-Century-Crofts<PublisherName Language="chs"/>, 375–446
[3]
Assailly A (1954). Sur les rapports de l'oxalate de chaux et de l'amidon. Cr Acad Sci D, 238: 1902–1904
[4]
Barnabas A D, Arnott H J (1990). Calcium oxalate crystal formation in the bean (Phaseolus vulgaris L.) seed coat. Bot Gaz, 151(3): 331–341
CrossRef Google scholar
[5]
Borchert R (1985). Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta, 165(3): 301–310
CrossRef Google scholar
[6]
Borchert R (1986). Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia tracanthos L. Planta, 168(4): 571–578
CrossRef Google scholar
[7]
Bouropoulos N, Weiner S, Addadi L (2001). Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chemistry, 7(9): 1881–1888
CrossRef Pubmed Google scholar
[8]
Calmes J (1969). Contribution a l'etude du metabolisme de l'acide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon). Cr Acad Sci D, 269(6): 704–707
[9]
Calmes J, Carles J (1970). La repartition et l'evolution des cristaux d'oxalate de calcium dans les tissus de vigne vierge au cours d'un cycle de vegetation. B Soc Bot Fr, 117(5/6): 189–198
[10]
Catherwood D J, Savage G P, Mason S M, Scheffer J J C, Douglas J A (2007). Oxalate content of cormels of Japanese taro (Colocasia esculenta (L.) Schott) and the effect of cooking. J Food Compost Anal, 20(3–4): 147–151
CrossRef Google scholar
[11]
Choi Y E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001). Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213(1): 45–50
CrossRef Pubmed Google scholar
[12]
Coté G G (2009). Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot, 96(7): 1245–1254
CrossRef Pubmed Google scholar
[13]
Crofts A J, Leborgne-Castel N, Hillmer S, Robinson D G, Phillipson B, Carlsson L E, Ashford D A, Denecke J (1999). Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell, 11(11): 2233–2248
CrossRef Pubmed Google scholar
[14]
De Yoreo J J, Qiu S R, Hoyer J R (2006). Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol, 291(6): F1123–F1132
CrossRef Pubmed Google scholar
[15]
Franceschi V R (1989). Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma, 148(2-3): 130–137
CrossRef Google scholar
[16]
Franceschi V R, Horner H T Jr (1979). Use of Psychotria puncata callus in study of calcium oxalate crystal idioblast formation. Z Pflanzenphysiol, 67: 61–75
[17]
Franceschi V R, Horner H T Jr (1980). Calcium oxalate crystals in plants. Bot Rev, 46(4): 361–427
CrossRef Google scholar
[18]
Franceschi V R, Li X, Zhang D, Okita T W (1993). Calsequestrinlike calcium-binding protein is expressed in calcium-accumulating cells of Pistia stratiotes. Proc Natl Acad Sci USA, 90(15): 6986–6990
CrossRef Pubmed Google scholar
[19]
Franceschi V R, Loewus F A (1995). Oxalate biosynthesis and function in plants and fungi. In: Calcium Oxalate in Biological Systems (Khan S R Ed.). Boca Raton: CRC Press<PublisherName Language="chs"/>, 113–130
[20]
Franceschi V R, Nakata P A (2005). Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56(1): 41–71
CrossRef Pubmed Google scholar
[21]
Franceschi V R, Schueren A M (1986). Incorporation of strontium into plant calcium oxalate crystals. Protoplasma, 130(2-3): 199–205
CrossRef Google scholar
[22]
Franceschi V R, Tarlyn N M (2002). L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol, 130(2): 649–656
CrossRef Pubmed Google scholar
[23]
Frank E, Jensen W A (1970). On the formation of the pattern of crystal idiobalsts in Canavalia ensiformis DC. IV. The fine structure of the crystal cells. Planta, 95: 202–217
CrossRef Google scholar
[24]
Frey-Wyssling A (1981). Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am J Bot, 68(1): 130–141
CrossRef Google scholar
[25]
Furuhashi T, Schwarzinger C, Miksik I, Smrz M, Beran A (2009). Molluscan shell evolution with review of shell calcification hypothesis. Comp Biochem Physiol B Biochem Mol Biol, 154(3): 351–371
CrossRef Pubmed Google scholar
[26]
Gallaher R N (1975). The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci Plan, 6(3): 315–330
CrossRef Google scholar
[27]
Gélinas B, Seguin P (2007). Oxalate in grain amaranth. J Agric Food Chem, 55(12): 4789–4794
CrossRef Pubmed Google scholar
[28]
Green M A, Fry S C (2005). Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature, 433(7021): 83–87
CrossRef Pubmed Google scholar
[29]
Guo Z, Tan H, Zhu Z, Lu S, Zhou B (2005). Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem, 43(10-11): 955–962
CrossRef Pubmed Google scholar
[30]
Hartl W P, Klapper H, Barbier B, Ensikat H J, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W (2007). Diversity of calcium oxalate crystals in Cactaceae. Can J Bot, 85(5): 501–517
CrossRef Google scholar
[31]
Heaney R P, Recker R R, Hinders S M (1988). Variability of calcium absorption. Am J Clin Nutr, 47(2): 262–264
Pubmed
[32]
Heaney R P, Weaver C M (1989). Oxalate: effect on calcium absorbability. Am J Clin Nutr, 50(4): 830–832
Pubmed
[33]
Heaney R P, Weaver C M (1990). Calcium absorption from kale. Am J Clin Nutr, 51(4): 656–657
Pubmed
[34]
Hodgkinson A (1977). Oxalic Acid Biology and Medicine. Academic Press: New York
[35]
Holmes R P, Goodman H O, Assimos D G (1995). Dietary oxalate and its intestinal absorption. Scanning Microsc, 9(4): 1109–1118, discussion 1118–1120
Pubmed
[36]
Holmes R P, Goodman H O, Assimos D G (2001). Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int, 59(1): 270–276
CrossRef Pubmed Google scholar
[37]
Horner H T, Kausch A P, Wagner B L (2000). Ascorbic Acid: A precursor of oxalate in crystal idioblasts of Yucca Torreyi in liquid root culture. Int J Plant Sci, 161(6): 861–868
CrossRef Google scholar
[38]
Horner H T, Wagner B L (1980). The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am J Bot, 67(9): 1347–1360
CrossRef Google scholar
[39]
Horner H T, Wagner B L (1995). Calcium oxalate formation in higher plants. In: Calcium Oxalate in Biological Systems. (Khan S R Ed.). Boca Raton: CRC Press, Florida, 53–72
[40]
Hudgins J W, Krekling T, Franceschi V R (2003). Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol, 159(3): 677–690
CrossRef Google scholar
[41]
Ilarslan H, Palmer R G, Horner H T (2001). Calcium oxalate crystals in developing seeds of soybean. Ann Bot (Lond), 88(2): 243–257
CrossRef Google scholar
[42]
Ji X M, Peng X X (2005). Oxalate accumulation as regulated by nitrogen forms and its relationship to photosynthesis in rice (Oryza sativa L.). J IntPlant Biol, 47(7): 831–838
[43]
Jou Y, Wang Y, Yen H E (2007). Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol, 34(4): 353–359
CrossRef Google scholar
[44]
Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007). Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts. Protoplasma, 231(3-4): 245–248
CrossRef Pubmed Google scholar
[45]
Kausch A P, Horner H T (1984). Differentiation of raphide crystal idioblasts in isolated root cultures of Yucca torreyi (Agavaceae). Can J Bot, 62(7): 1474–1484
CrossRef Google scholar
[46]
Kausch A P, Horner H T (1985). Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L. Planta, 164(1): 35–43
CrossRef Google scholar
[47]
Keates S E, Tarlyn N M, Loewus F A, Franceschi V R (2000). L-Ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry, 53(4): 433–440
CrossRef Pubmed Google scholar
[48]
Kochian L V (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 46(1): 237–260
CrossRef Google scholar
[49]
Korth K L, Doege S J, Park S H, Goggin F L, Wang Q, Gomez S K, Liu G, Jia L, Nakata P A (2006). Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol, 141(1): 188–195
CrossRef Pubmed Google scholar
[50]
Kostman T A, Franceschi V R (2000). Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma, 214(3-4): 166–179
CrossRef Google scholar
[51]
Kostman T A, Franceschi V R, Nakata P A (2003). Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Sci, 165(1): 205–212
CrossRef Google scholar
[52]
Kostman T A, Koscher J R (2003). L-galactono-gamma-lactone dehydrogenase is present in calcium oxalate crystal idioblasts of two plant species. Plant Physiol Biochem, 41(3): 201–206
CrossRef Google scholar
[53]
Kostman T A, Tarlyn N M, Franceschi V R (2007). Autoradiography utilising labelled ascorbic acid reveals biochemical and morphological details in diverse calcium oxalate crystal-forming species. Funct Plant Biol, 34(4): 339–342
CrossRef Google scholar
[54]
Kostman T A, Tarlyn N M, Loewus F A, Franceschi V R (2001). Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol, 125(2): 634–640
CrossRef Pubmed Google scholar
[55]
Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107
CrossRef Pubmed Google scholar
[56]
Kuo-Huang L L, Ku M S B, Franceschi V R (2007). Correlations between calcium oxalate crystals and photosynthetic activites in palisade cells of shade-adapted Peperomia glabella. Bot Stud (Taipei, Taiwan), 48(2): 155–164
[57]
Kuo-Huang L L, Zindler-Frank E (1998). Structure of crystal cells and influences of leaf development on crystal cell development and vice versa in Phaseolus vulgaris (Leguminosae). Bot Acta, 111: 337–345
[58]
Lazzaro M D, Thomson W W (1989). Ultrastructure of organic acid secreting trichomes of chickpea (Cicer arietinum). Can J Bot, 67(9): 2669–2677
CrossRef Google scholar
[59]
Leeuwenhoek A (1675). Microscopical observations. Philos T Roy Soc, 10: 380–385
[60]
Lersten N, Horner H (2008a). Crystal macropatterns in leaves of Fagaceae and Nothofagaceae: a comparative study. Plant Syst Evol, 271(3--4): 239–253
CrossRef Google scholar
[61]
Lersten N, Horner H (2008b). Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Syst Evol, 276(3--4): 255–260
CrossRef Google scholar
[62]
Lersten N, Horner H (2009). Crystal diversity and macropatterns in leaves of Oleaceae. Plant Syst Evol, 282(1--2): 87–102
CrossRef Google scholar
[63]
Lersten N R, Horner H T (2000). Types of calcium oxalate crystals and macro patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol, 224: 83–96
CrossRef Google scholar
[64]
Lersten N R, Horner H T (2011). Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot, 98(1): 1–11
CrossRef Pubmed Google scholar
[65]
Li X X, Franceschi V R (1990). Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L. Eur J Cell Biol, 51(1): 9–16
Pubmed
[66]
Li X X, Zhang D Z, Lynch-Holm V J, Okita T W, Franceschi V R (2003). Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol, 133(2): 549–559
CrossRef Pubmed Google scholar
[67]
Libert B (1987). Breeding a low-oxalate rhubarb (Rheum sp. L.). J Hortic Sci Biotechnol, 62(4): 523–529
[68]
Libert B, Franceschi V R (1987). Oxalate in crop plants. J Agric Food Chem, 35(6): 926–938
CrossRef Google scholar
[69]
Loewus F (1999). Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry, 52(2): 193–210
CrossRef Google scholar
[70]
Loewus F A, Wagner G, Yang J C (1975). Biosynthesis and metabolism of ascorbic acid in plants. Ann N Y Acad Sci, 258(1 Second Confer): 7–23
CrossRef Pubmed Google scholar
[71]
Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997a). Internal detoxification mechanism of Al in hydrangea. Plant Physiol, 113(4): 1033–1039
Pubmed
[72]
Ma J F, Ryan P R, Delhaize E (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 6(6): 273–278
CrossRef Pubmed Google scholar
[73]
Ma J F, Zheng S J, Matsumoto H, Hiradate S (1997b). Detoxifying aluminium with buckwheat. Nature, 390(6660): 569–570
CrossRef Pubmed Google scholar
[74]
Massey L K, Palmer R G, Horner H T (2001). Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. J Agric Food Chem, 49(9): 4262–4266
CrossRef Pubmed Google scholar
[75]
Mazen A M A (2004). Calcium oxalate deposits in leaves of Corchorus olitotius as related to accumulation of toxic metals. Russ J Plant Physiol, 51(2): 281–285
CrossRef Google scholar
[76]
Mazen A M A, Zhang D Z, Franceschi V R (2004). Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol, 161(2): 435–448
CrossRef Google scholar
[77]
McConn M M, Nakata P A (2002). Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta, 215(3): 380–386
CrossRef Pubmed Google scholar
[78]
McConn M M, Nakata P A (2004). Oxalate reduces calcium availability in the pads of the prickly pear cactus through formation of calcium oxalate crystals. J Agric Food Chem, 52(5): 1371–1374
CrossRef Pubmed Google scholar
[79]
McNair J B (1932). The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot, 19(3): 255–271
CrossRef Google scholar
[80]
Melino V J, Soole K L, Ford C M (2009). Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol, 9(1): 145
CrossRef Pubmed Google scholar
[81]
Molano-Flores B (2001). Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot (Lond), 88(3): 387–391
CrossRef Google scholar
[82]
Monje P V, Baran E J (2002). Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol, 128(2): 707–713
CrossRef Pubmed Google scholar
[83]
Moreau A G, Savage G P (2009). Oxalate content of purslane leaves and the effect of combining them with yoghurt or coconut products. J Food Compost Anal, 22(4): 303–306
CrossRef Google scholar
[84]
Morris J, Nakata P A, McConn M, Brock A, Hirschi K D (2007). Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol, 64(5): 613–618
CrossRef Pubmed Google scholar
[85]
Morrow A C, Dute R R (2002). Crystals associated with the intertracheid pit membrane of the woody fern Botrychium multifidum. Am Fern J, 92(1): 10–19
CrossRef Google scholar
[86]
Nakata P A (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci, 164(6): 901–909
CrossRef Google scholar
[87]
Nakata P A (2012). Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula. Plant Sci, 185-186(0): 246–249
CrossRef Pubmed Google scholar
[88]
Nakata P A, Kostman T A, Franceschi V R (2003). Calreticulin is enriched in the crystal idioblasts of Pistia stratiotes. Plant Physiol Biochem, 41(5): 425–430
CrossRef Google scholar
[89]
Nakata P A, McConn M (2002). Sequential subtractive approach facilitates identification of differentially expressed genes. Plant Physiol Biochem, 40(4): 307–312
CrossRef Google scholar
[90]
Nakata P A, McConn M M (2000). Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol, 124(3): 1097–1104
CrossRef Pubmed Google scholar
[91]
Nakata P A, McConn M M (2003a). Calcium oxalate crystal formation is not essential for growth of Medicago truncatula. Plant Physiol Biochem, 41(4): 325–329
CrossRef Google scholar
[92]
Nakata P A, McConn M M (2003b). Influence of the calcium oxalate defective 4 (cod4) mutation on the growth, oxalate content, and calcium content of Medicago truncatula. Plant Sci, 164(4): 617–621
CrossRef Google scholar
[93]
Nakata P A, McConn M M (2006). A genetic mutation that reduces calcium oxalate content increases calcium availability in Medicago truncatula. Funct Plant Biol, 33(7): 703–706
CrossRef Google scholar
[94]
Nakata P A, McConn M M (2007a). Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula leaves. Plant Sci, 172(5): 958–961
CrossRef Google scholar
[95]
Nakata P A, McConn M M (2007b). Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula. Funct Plant Biol, 34(4): 332–338
CrossRef Google scholar
[96]
Nakata P A, McConn M M (2007c). Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels. Plant Physiol Biochem, 45(3-4): 216–220
CrossRef Pubmed Google scholar
[97]
Nordin B E C, Hodgkinson A, Peacock M, Robertson W G (1979). Urinary tract calculi. In: Nephrology (Hamburger J, Crosnier J, Grunfeld J P, Eds). Wiley: New York and Paris, 1091
[98]
Nuss R F, Loewus F A (1978). Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol, 61(4): 590–592
CrossRef Pubmed Google scholar
[99]
Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng Rep, 58(3–5): 77–116
CrossRef Google scholar
[100]
Oscarsson K V, Savage G P (2007). Composition and availability of soluble and insoluble oxalates in raw and cooked taro (Colocasia esculenta var. Schott) leaves. Food Chem, 101(2): 559–562
CrossRef Google scholar
[101]
Park S H, Doege S J, Nakata P A, Korth K L (2009). Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties. Entomol Exp Appl, 131(2): 208–215
CrossRef Google scholar
[102]
Parsons H T, Fry S C (2012). Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry, 75(0): 41–49
CrossRef Pubmed Google scholar
[103]
Parsons H T, Yasmin T, Fry S C (2011). Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J, 440(3): 375–383
CrossRef Pubmed Google scholar
[104]
Pennisi S V, McConnell D B (2001). Inducible calcium sinks and preferential calcium allocation in leaf primordia of Dracaena sanderiana Hort. Sander ex M.T. Mast. (Dracaenaceae). HortScience, 36: 1187–1191
[105]
Pennisi S V, McConnell D B, Gower L B, Kane M E, Lucansky T (2001). Intracellular calcium oxalate crystal structure in Dracaena sanderiana. New Phytol, 150(1): 111–120
CrossRef Google scholar
[106]
Proietti S, Moscatello S, Famiani F, Battistelli A (2009). Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem, 47(8): 717–723
CrossRef Pubmed Google scholar
[107]
Prychid C J, Jabaily R S, Rudall P J (2008). Cellular ultrastructure and crystal development in Amorphophallus (Araceae). Ann Bot (Lond), 101(7): 983–995
CrossRef Pubmed Google scholar
[108]
Prychid C J, Rudall P J (1999). Calcium oxalate crystals in monocotyledons: A review of their structure and systematics. Ann Bot (Lond), 84(6): 725–739
CrossRef Google scholar
[109]
Rahman M M, Ishii Y, Niimi M, Kawamura O (2010). Effect of application form of nitrogen on oxalate accumulation and mineral uptake by napiergrass (Pennisetum purpureum). Grassland Sci, 56(3): 141–144
CrossRef Google scholar
[110]
Rinallo C, Modi G (2002). Content of oxalate in Actinidia deliciosa plants grown in nutrient solutions with different nitrogen forms. Biol Plant, 45(1): 137–139
CrossRef Google scholar
[111]
Ritter M M C, Savage G P (2007). Soluble and insoluble oxalate content of nuts. J Food Compost Anal, 20(3–4): 169–174
CrossRef Google scholar
[112]
Ruiz N, Ward D, Saltz S (2002a). Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defense? Funct Ecol, 16(1): 99–105
CrossRef Google scholar
[113]
Ruiz N, Ward D, Saltz S (2002b). Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. J Ecol, 90(3): 472–479
CrossRef Google scholar
[114]
Ryall R L, Stapleton A M F (1995) Urinary macromolecules in calcium oxalate stone and crystal matrix: good, bad, or indifferent? In: Calcium oxalate in biological systems (Kahn S R, Ed.). CRC Press, Inc.: Boca Raton, 265–290
[115]
Ryan P R, Delhaize E, Jones D L (2001). Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol, 52(1): 527–560
CrossRef Pubmed Google scholar
[116]
Saito K, Ohmoto J, Kuriha N (1997). Incorporation of 18O into oxalic, L-threonic and L-tartaric acids during cleavage of L-ascorbic and 5-keto-D-gluconic acids in plants. Phytochemistry, 44(5): 805–809
CrossRef Google scholar
[117]
Saltz S, Ward D (2000). Responding to a three-pronged attack: desert lilies subject to herbivory by dorcas gazelles. Plant Ecol, 148(2): 127–138
CrossRef Google scholar
[118]
Savage G P, Mårtensson L, Sedcole J R (2009). Composition of oxalates in baked taro (Colocasia esculenta var. Schott) leaves cooked alone or with additions of cows milk or coconut milk. J Food Compost Anal, 22(1): 83–86
CrossRef Google scholar
[119]
Savage G P, Vanhanen L, Mason S M, Ross A B (2000). Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J Food Compost Anal, 13(3): 201–206
CrossRef Google scholar
[120]
Siener R, Hönow R, Seidler A, Voss S, Hesse A (2006a). Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem, 98(2): 220–224
CrossRef Google scholar
[121]
Siener R, Hönow R, Voss S, Seidler A, Hesse A (2006b). Oxalate content of cereals and cereal products. J Agric Food Chem, 54(8): 3008–3011
CrossRef Pubmed Google scholar
[122]
Smith K T, Shortle W C, Connolly J H, Minocha R, Jellison J (2009). Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environ Exp Bot, 67(1): 277–283
CrossRef Google scholar
[123]
Sugiyama N, Okutani I (1996). Relationship between nitrate reduction and oxalate synthesis in spinach leaves. J Plant Physiol, 149(1-2): 14–18
CrossRef Google scholar
[124]
Taylor G J (1991). Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol, 10: 57–93
[125]
Thongboonkerd V, Semangoen T, Chutipongtanate S (2006). Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta, 367(1-2): 120–131
CrossRef Pubmed Google scholar
[126]
Thurston E L (1976). Morphology, fine structure and ontogeny of the stinging emergence of Tragia ramosa and T. saxicola (Euphorbiaceae). Am J Bot, 63(6): 710–718
CrossRef Google scholar
[127]
Tillman-Sutela E, Kauppi A (1999). Calcium oxalate crystals in the mature seeds of Norway spruce, Picea abies (L.) Karst. Trees (Berl), 13(3): 131–137
CrossRef Google scholar
[128]
Volk G M, Lynch-Holm V J, Kostman T A, Goss L J, Franceschi V R (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol, 4(1): 34–45
CrossRef Google scholar
[129]
Wagner G, Loewus F (1973). The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol, 52(6): 651–654
CrossRef Pubmed Google scholar
[130]
Ward D, Spiegel M, Saltz S (1997). Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lilly. J Chem Ecol, 23(2): 333–346
CrossRef Google scholar
[131]
Weaver C M, Martin B R, Ebner J S, Krueger C A (1987). Oxalic acid decreases calcium absorption in rats. J Nutr, 117(11): 1903–1906
Pubmed
[132]
Webb M A (1999). Cell-mediated crystallization of calcium oxalate in plants. Plant Cell, 11(4): 751–761
CrossRef Pubmed Google scholar
[133]
Webb M A, Arnott H J (1981). An ultrastructural study of druse crystals in okra cotyledons. Scan Electron Microsc, 3: 285–292
[134]
Webb M A, Arnott H J (1983). Inside plant crystals: a study of the noncrystalline core in druses of Vitis vinifera endosperm. Scan Electron Microsc, IV: 1759–1770
[135]
Webb M A, Cavaletto J M, Carpita N C, Lopez L E, Arnott H J (1995). The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant J, 7(4): 633–648
CrossRef Google scholar
[136]
Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256
CrossRef Pubmed Google scholar
[137]
Xu H W, Ji X M, He Z H, Shi W P, Zhu G H, Niu J K, Li B S, Peng X X (2006). Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J Exp Bot, 57(9): 1899–1908
CrossRef Pubmed Google scholar
[138]
Yang J C, Loewus F A (1975). Metabolic conversion of L-ascorbic acid in oxalate-accumulating plants. Plant Physiol, 56(2): 283–285
CrossRef Pubmed Google scholar
[139]
Yang Y Y, Jung J Y, Song W Y, Suh H S, Lee Y (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol, 124(3): 1019–1026
CrossRef Pubmed Google scholar
[140]
Yu L, Jiang J, Zhang C, Jiang L, Ye N, Lu Y, Yang G, Liu E, Peng C, He Z, Peng X (2010). Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot, 61(6): 1625–1634
CrossRef Pubmed Google scholar
[141]
Zindler-Frank E (1975). On the formation of the pattern of crystal idioblasts in Canavalia ensiformis D.C.: VII. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z Pflanzenphysiol, 77: 80–85
[142]
Zindler-Frank E (1976). Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey. Z Pflanzenphysiol, 80: 1–13
[143]
Zindler-Frank E (1987) Calcium oxalate in legumes. In: Advances in Legume Systematics (Stirton E, Ed.)Royal Botanic Gardens: Kew, UK, 279–316
[144]
Zindler-Frank E (1991). Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Bot Acta, 104: 229–232
[145]
Zindler-Frank E, Honow R, Hesse A (2001). Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J Plant Physiol, 158(2): 139–144
CrossRef Google scholar

Acknowledgments

Thanks go to Michele McConn, Bin Luo, and Justin Foster for comments on the manuscript. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This research was supported in part by the US Department of Agriculture, Agricultural Research Service, under Cooperative Agreement number 58-6250-0-008.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(471 KB)

Accesses

Citations

Detail

Sections
Recommended

/