Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery

Robert CUNNINGHAM, Di MA, Lingjun LI

PDF(538 KB)
PDF(538 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (4) : 313-335. DOI: 10.1007/s11515-012-1218-y
REVIEW
REVIEW

Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery

Author information +
History +

Abstract

The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology. Proteomics technologies have evolved to produce large data sets of proteins or peptides involved in various biologic and disease progression processes generating testable hypothesis for complex biologic questions. This review provides an introduction to relevant topics in proteomics and peptidomics including biologic material selection, sample preparation, separation techniques, peptide fragmentation, post-translational modifications, quantification, bioinformatics, and biomarker discovery and validation. In addition, current literature, remaining challenges, and emerging technologies for proteomics and peptidomics are presented.

Keywords

mass spectrometry / proteomics / peptidomics / review / post-translational modifications / fragmentation / separation / protein quantitation / sample preparation / biomarker discovery / validation / bioinformatics

Cite this article

Download citation ▾
Robert CUNNINGHAM, Di MA, Lingjun LI. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery. Front Biol, 2012, 7(4): 313‒335 https://doi.org/10.1007/s11515-012-1218-y

References

[1]
Acosta-Martin A E, Panchaud A, Chwastyniak M, Dupont A, Juthier F, Gautier C, Jude B, Amouyel P, Goodlett D R, Pinet F (2011). Quantitative mass spectrometry analysis using PAcIFIC for the identification of plasma diagnostic biomarkers for abdominal aortic aneurysm. PLoS ONE, 6(12): e28698
CrossRef Pubmed Google scholar
[2]
Addona T A, Shi X, Keshishian H, Mani D R, Burgess M, Gillette M A, Clauser K R, Shen D, Lewis G D, Farrell L A, Fifer M A, Sabatine M S, Gerszten R E, Carr S A (2011). A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol, 29(7): 635-643
CrossRef Pubmed Google scholar
[3]
Ahmed F E (2009a). The role of capillary electrophoresis-mass spectrometry to proteome analysis and biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci, 877(22): 1963-1981
CrossRef Pubmed Google scholar
[4]
Ahmed F E (2009b). Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J Sep Sci, 32(5-6): 771-798
Pubmed
[5]
Al-Tarawneh S K, Border M B, Dibble C F, Bencharit S (2011). Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS, 15(6): 353-361
CrossRef Pubmed Google scholar
[6]
Albalat A, Mischak H, Mullen W (2011a). Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics, 8(5): 615-629
CrossRef Pubmed Google scholar
[7]
Albalat A, Mischak H, Mullen W (2011b). Urine proteomics in clinical applications: technologies, principal considerations and clinical implementation. Prilozi, 32(1): 13-44
Pubmed
[8]
Alpert A J (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A, 499: 177-196
CrossRef Pubmed Google scholar
[9]
Alpert A J (2008). Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem, 80(1): 62-76
CrossRef Pubmed Google scholar
[10]
Altelaar A F, Mohammed S, Brans M A, Adan R A, Heck A J (2009). Improved identification of endogenous peptides from murine nervous tissue by multiplexed peptide extraction methods and multiplexed mass spectrometric analysis. J Proteome Res, 8(2): 870-876
CrossRef Pubmed Google scholar
[11]
Bandura D R, Baranov V I, Ornatsky O I, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick J E, Tanner S D (2009). Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem, 81(16): 6813-6822
CrossRef Pubmed Google scholar
[12]
Barbara J E, Castro-Perez J M (2011). High-resolution chromatography/time-of-flight MSE with in silico data mining is an information-rich approach to reactive metabolite screening. Rapid Commun Mass Spectrom, 25(20): 3029-3040
CrossRef Pubmed Google scholar
[13]
Beausoleil S A, Villén J, Gerber S A, Rush J, Gygi S P (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol, 24(10): 1285-1292
CrossRef Pubmed Google scholar
[14]
Belda-Iniesta C, de Castro J, Perona R (2011). Translational proteomics: what can you do for true patients? J Proteome Res, 10(1): 101-104
CrossRef Pubmed Google scholar
[15]
Belov M E, Prasad S, Prior D C, Danielson W F 3rd, Weitz K, Ibrahim Y M, Smith R D (2011). Pulsed multiple reaction monitoring approach to enhancing sensitivity of a tandem quadrupole mass spectrometer. Anal Chem, 83(6): 2162-2171
CrossRef Pubmed Google scholar
[16]
Bermejo-Pareja F, Antequera D, Vargas T, Molina J A, Carro E (2010). Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol, 10(1): 108
CrossRef Pubmed Google scholar
[17]
Bondarenko P V, Chelius D, Shaler T A (2002). Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem, 74(18): 4741-4749
CrossRef Pubmed Google scholar
[18]
Brechlin P, Jahn O, Steinacker P, Cepek L, Kratzin H, Lehnert S, Jesse S, Mollenhauer B, Kretzschmar H A, Wiltfang J, Otto M (2008). Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics, 8(20): 4357-4366
CrossRef Pubmed Google scholar
[19]
Burke T W, Mant C T, Black J A, Hodges R S (1989). Strong cation-exchange high-performance liquid chromatography of peptides. Effect of non-specific hydrophobic interactions and linearization of peptide retention behaviour. J Chromatogr, 476: 377-389
Pubmed
[20]
Butterfield D A, Owen J B (2011). Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease: insights into protein alterations consistent with the pathology and progression of this dementing disorder. Proteomics Clin Appl, 5(1-2): 50-56
CrossRef Pubmed Google scholar
[21]
Caprioli R M, Farmer T B, Gile J (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem, 69(23): 4751-4760
CrossRef Pubmed Google scholar
[22]
Castagnola M, Cabras T, Vitali A, Sanna M T, Messana I (2011). Biotechnological implications of the salivary proteome. Trends Biotechnol, 29(8): 409-418
CrossRef Pubmed Google scholar
[23]
Cazares L H, Troyer D A, Wang B, Drake R R, Semmes O J (2011). MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem, 401(1): 17-27
CrossRef Pubmed Google scholar
[24]
Chakraborty A B, Berger S J, Gebler J C (2007). Use of an integrated MS—multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Rapid Commun Mass Spectrom, 21(5): 730-744
CrossRef Pubmed Google scholar
[25]
Chaurand P, Schwartz S A, Caprioli R M (2002). Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr Opin Chem Biol, 6(5): 676-681
CrossRef Pubmed Google scholar
[26]
Chaurand P, Stoeckli M, Caprioli R M (1999). Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem, 71(23): 5263-5270
CrossRef Pubmed Google scholar
[27]
Che F Y, Fricker L D (2005). Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom, 40(2): 238-249
CrossRef Pubmed Google scholar
[28]
Chelius D, Bondarenko P V (2002). Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res, 1(4): 317-323
CrossRef Pubmed Google scholar
[29]
Chen J, Balgley B M, DeVoe D L, Lee C S (2003). Capillary isoelectric focusing-based multidimensional concentration/separation platform for proteome analysis. Anal Chem, 75(13): 3145-3152
CrossRef Pubmed Google scholar
[30]
Chen R, Jiang X, Conaway M C, Mohtashemi I, Hui L, Viner R, Li L (2010). Mass spectral analysis of neuropeptide expression and distribution in the nervous system of the lobster Homarus americanus. J Proteome Res, 9(2): 818-832
CrossRef Pubmed Google scholar
[31]
Chen R, Ma M, Hui L, Zhang J, Li L (2009). Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry. J Am Soc Mass Spectrom, 20(4): 708-718
CrossRef Pubmed Google scholar
[32]
Chi A, Huttenhower C, Geer L Y, Coon J J, Syka J E, Bai D L, Shabanowitz J, Burke D J, Troyanskaya O G, Hunt D F (2007). Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA, 104(7): 2193-2198
CrossRef Pubmed Google scholar
[33]
Chien K Y, Liu H C, Goshe M B (2011). Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek’s Disease Virus infection. J Proteome Res, 10(9): 4041-4053
CrossRef Pubmed Google scholar
[34]
Choe L, D’Ascenzo M, Relkin N R, Pappin D, Ross P, Williamson B, Guertin S, Pribil P, Lee K H (2007). 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics, 7(20): 3651-3660
CrossRef Pubmed Google scholar
[35]
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596-601
CrossRef Pubmed Google scholar
[36]
Colgrave M L, Xi L, Lehnert S A, Flatscher-Bader T, Wadensten H, Nilsson A, Andren P E, Wijffels G (2011). Neuropeptide profiling of the bovine hypothalamus: thermal stabilization is an effective tool in inhibiting post-mortem degradation. Proteomics, 11(7): 1264-1276
CrossRef Pubmed Google scholar
[37]
Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon C D, Domon B (2011). Toward a standardized urine proteome analysis methodology. Proteomics, 11(6): 1160-1171
CrossRef Pubmed Google scholar
[38]
Craig R, Beavis R C (2004). TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(9): 1466-1467
CrossRef Pubmed Google scholar
[39]
Craig R, Cortens J P, Beavis R C (2004). Open source system for analyzing, validating, and storing protein identification data. J Proteome Res, 3(6): 1234-1242
CrossRef Pubmed Google scholar
[40]
D’Ascenzo M, Choe L, Lee K H (2008). iTRAQPak: an R based analysis and visualization package for 8-plex isobaric protein expression data. Brief Funct Genomics Proteomics, 7(2): 127-135
CrossRef Pubmed Google scholar
[41]
Dai L, Li C, Shedden K A, Lee C J, Li C, Quoc H, Simeone D M, Lubman D M (2010). Quantitative proteomic profiling studies of pancreatic cancer stem cells. J Proteome Res, 9(7): 3394-3402
CrossRef Pubmed Google scholar
[42]
Datta A, Park J E, Li X, Zhang H, Ho Z S, Heese K, Lim S K, Tam J P, Sze S K (2010). Phenotyping of an in vitro model of ischemic penumbra by iTRAQ-based shotgun quantitative proteomics. J Proteome Res, 9(1): 472-484
CrossRef Pubmed Google scholar
[43]
Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser D F, Burkhard P R, Sanchez J C (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem, 80(8): 2921-2931
CrossRef Pubmed Google scholar
[44]
Dayon L, Pasquarello C, Hoogland C, Sanchez J C, Scherl A (2010). Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteomics, 73(4): 769-777
CrossRef Pubmed Google scholar
[45]
De La Monte S M, Wands J R (2001). The AD7c-NTP neuronal thread protein biomarker for detecting Alzheimer’s disease. J Alzheimers Dis, 3(3): 345-353
Pubmed
[46]
Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands J L, Schanstra J P (2008). Urine in clinical proteomics. Mol Cell Proteomics, 7(10): 1850-1862
CrossRef Pubmed Google scholar
[47]
Desiderio C, Rossetti D V, Iavarone F, Messana I, Castagnola M (2010). Capillary electrophoresis—mass spectrometry: recent trends in clinical proteomics. J Pharm Biomed Anal, 53(5): 1161-1169
CrossRef Pubmed Google scholar
[48]
Deutsch E W, Lam H, Aebersold R (2008). PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep, 9(5): 429-434
CrossRef Pubmed Google scholar
[49]
Devic I, Hwang H, Edgar J S, Izutsu K, Presland R, Pan C, Goodlett D R, Wang Y, Armaly J, Tumas V, Zabetian C P, Leverenz J B, Shi M, Zhang J (2011). Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain, 134(7): e178
CrossRef Pubmed Google scholar
[50]
Di Palma S, Boersema P J, Heck A J, Mohammed S (2011a). Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal Chem, 83(9): 3440-3447
Pubmed
[51]
Di Palma S, Stange D, van de Wetering M, Clevers H, Heck A J, Mohammed S (2011b). Highly sensitive proteome analysis of FACS-sorted adult colon stem cells. J Proteome Res, 10(8): 3814-3819
CrossRef Pubmed Google scholar
[52]
Diez R, Herbstreith M, Osorio C, Alzate O (2010). 2-D Fluorescence Difference Gel Electrophoresis (DIGE) in Neuroproteomics
[53]
Dowell J A, Heyden W V, Li L (2006). Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: Enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J Proteome Res, 5(12): 3368-3375
CrossRef Pubmed Google scholar
[54]
Dowell J A, Johnson J A, Li L (2009). Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res, 8(8): 4135-4143
CrossRef Pubmed Google scholar
[55]
Dowling P, Clynes M (2011). Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics, 11(4): 794-804
CrossRef Pubmed Google scholar
[56]
Edelmann M J (2011). Strong cation exchange chromatography in analysis of posttranslational modifications: innovations and perspectives. J Biomed Biotechnol, 2011: 1
CrossRef Pubmed Google scholar
[57]
Eliuk S M, Maltby D, Panning B, Burlingame A L (2010). High resolution electron transfer dissociation studies of unfractionated intact histones from murine embryonic stem cells using on-line capillary LC separation: determination of abundant histone isoforms and post-translational modifications. Mol Cell Proteomics, 9(5): 824-837
CrossRef Pubmed Google scholar
[58]
Eng J K, McCormack A L, Yates Iii J R (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom, 5(11): 976-989
CrossRef Google scholar
[59]
Filiou M D, Martins-de-Souza D, Guest P C, Bahn S, Turck C W (2012). To label or not to label: Applications of quantitative proteomics in neuroscience research. Proteomics,
CrossRef Google scholar
[60]
Fonslow B R, Yates J R 3rd (2009). Capillary electrophoresis applied to proteomic analysis. J Sep Sci, 32(8): 1175-1188
CrossRef Pubmed Google scholar
[61]
François I, Sandra K, Sandra P (2009). Comprehensive liquid chromatography: fundamental aspects and practical considerations—a review. Anal Chim Acta, 641(1-2): 14-31
CrossRef Pubmed Google scholar
[62]
Frese C K, Altelaar A F, Hennrich M L, Nolting D, Zeller M, Griep-Raming J, Heck A J, Mohammed S (2011). Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res, 10(5): 2377-2388
CrossRef Pubmed Google scholar
[63]
Fricker L D (2010). Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Mol Biosyst, 6(8): 1355-1365
CrossRef Pubmed Google scholar
[64]
Fu Q, Li L (2005). De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal Chem, 77(23): 7783-7795
CrossRef Pubmed Google scholar
[65]
Geer L Y, Markey S P, Kowalak J A, Wagner L, Xu M, Maynard D M, Yang X, Shi W, Bryant S H (2004). Open mass spectrometry search algorithm. J Proteome Res, 3(5): 958-964
CrossRef Pubmed Google scholar
[66]
Gelman J S, Fricker L D (2010). Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS J, 12(3): 279-289
CrossRef Pubmed Google scholar
[67]
Gelman J S, Sironi J, Castro L M, Ferro E S, Fricker L D (2010). Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem, 113(4): 871-880
CrossRef Pubmed Google scholar
[68]
Gelman J S, Sironi J, Castro L M, Ferro E S, Fricker L D (2011). Peptidomic analysis of human cell lines. J Proteome Res, 10(4): 1583-1592
CrossRef Pubmed Google scholar
[69]
Geromanos S J, Vissers J P, Silva J C, Dorschel C A, Li G Z, Gorenstein M V, Bateman R H, Langridge J I (2009). The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics, 9(6): 1683-1695
CrossRef Pubmed Google scholar
[70]
Gilar M, Olivova P, Daly A E, Gebler J C (2005). Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem, 77(19): 6426-6434
CrossRef Pubmed Google scholar
[71]
Gilmore J M, Washburn M P (2010). Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics, 73(11): 2078-2091
CrossRef Pubmed Google scholar
[72]
Giron P, Dayon L, Turck N, Hoogland C, Sanchez J C (2011). Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling. J Proteome Res, 10(1): 249-258
CrossRef Pubmed Google scholar
[73]
Griffin N M, Schnitzer J E (2011). Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol Cell Proteomics 10, R110 000935
[74]
Groen A J, Lilley K S (2010). Proteomics of total membranes and subcellular membranes. Expert Rev Proteomics, 7(6): 867-878
CrossRef Pubmed Google scholar
[75]
Guiochon G, Marchetti N, Mriziq K, Shalliker R A (2008). Implementations of two-dimensional liquid chromatography. J Chromatogr A, 1189(1-2): 109-168
CrossRef Pubmed Google scholar
[76]
Guo T, Lee C S, Wang W, DeVoe D L, Balgley B M (2006). Capillary separations enabling tissue proteomics-based biomarker discovery. Electrophoresis, 27(18): 3523-3532
CrossRef Pubmed Google scholar
[77]
Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 17(10): 994-999
CrossRef Pubmed Google scholar
[78]
Han Y, Ma B, Zhang K (2005). SPIDER: software for protein identification from sequence tags with de novo sequencing error. J Bioinform Comput Biol, 3(3): 697-716
CrossRef Pubmed Google scholar
[79]
Hanash S (2004). Building a foundation for the human proteome: the role of the Human Proteome Organization. J Proteome Res, 3(2): 197-199
CrossRef Pubmed Google scholar
[80]
Haqqani A S, Kelly J F, Stanimirovic D B (2008). Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags. Methods Mol Biol, 439: 225-240
CrossRef Pubmed Google scholar
[81]
Haselberg R, de Jong G J, Somsen G W (2007). Capillary electrophoresis-mass spectrometry for the analysis of intact proteins. J Chromatogr A, 1159(1-2): 81-109
CrossRef Pubmed Google scholar
[82]
Haselberg R, de Jong G J, Somsen G W (2011). Capillary electrophoresis-mass spectrometry for the analysis of intact proteins 2007-2010. Electrophoresis, 32(1): 66-82
CrossRef Pubmed Google scholar
[83]
Helbig A O, Heck A J, Slijper M (2010). Exploring the membrane proteome—challenges and analytical strategies. J Proteomics, 73(5): 868-878
CrossRef Pubmed Google scholar
[84]
Herberth M, Koethe D, Cheng T M, Krzyszton N D, Schoeffmann S, Guest P C, Rahmoune H, Harris L W, Kranaster L, Leweke F M, Bahn S (2011). Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry, 16(8): 848-859
CrossRef Pubmed Google scholar
[85]
Herbst A, McIlwain S, Schmidt J J, Aiken J M, Page C D, Li L (2009). Prion disease diagnosis by proteomic profiling. J Proteome Res, 8(2): 1030-1036
CrossRef Pubmed Google scholar
[86]
Holten-Andersen M N, Murphy G, Nielsen H J, Pedersen A N, Christensen I J, Høyer-Hansen G, Brünner N, Stephens R W (1999). Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br J Cancer, 80(3-4): 495-503
CrossRef Pubmed Google scholar
[87]
Holten-Andersen M N, Schrohl A S, Brünner N, Nielsen H J, Høgdall C K, Høgdall E V (2003). Evaluation of sample handling in relation to levels of tissue inhibitor of metalloproteinases-1 measured in blood by immunoassay. Int J Biol Markers, 18(3): 170-176
Pubmed
[88]
Hood L, Friend S H (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol, 8(3): 184-187
CrossRef Pubmed Google scholar
[89]
Hsu J L, Huang S Y, Chow N H, Chen S H (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem, 75(24): 6843-6852
CrossRef Pubmed Google scholar
[90]
Huck C W, Bakry R, Huber L A, Bonn G K (2006). Progress in capillary electrophoresis coupled to matrix-assisted laser desorption/ionization- time of flight mass spectrometry. Electrophoresis, 27(11): 2063-2074
CrossRef Pubmed Google scholar
[91]
Hui L, Cunningham R, Zhang Z, Cao W, Jia C, Li L (2011). Discovery and characterization of the Crustacean hyperglycemic hormone precursor related peptides (CPRP) and orcokinin neuropeptides in the sinus glands of the blue crab Callinectes sapidus using multiple tandem mass spectrometry techniques. J Proteome Res, 10(9): 4219-4229
CrossRef Pubmed Google scholar
[92]
Hummon A B, Amare A, Sweedler J V (2006). Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom Rev, 25(1): 77-98
CrossRef Pubmed Google scholar
[93]
Hwang S I, Thumar J, Lundgren D H, Rezaul K, Mayya V, Wu L, Eng J, Wright M E, Han D K (2007). Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues. Oncogene, 26(1): 65-76
CrossRef Pubmed Google scholar
[94]
Inutan E D, Richards A L, Wager-Miller J, Mackie K, McEwen C N, Trimpin S (2010). Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol Cell Proteomics, 10
[95]
Jahn H, Wittke S, Zürbig P, Raedler T J, Arlt S, Kellmann M, Mullen W, Eichenlaub M, Mischak H, Wiedemann K (2011). Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS ONE, 6(10): e26540
CrossRef Pubmed Google scholar
[96]
Jedrychowski M P, Huttlin E L, Haas W, Sowa M E, Rad R, Gygi S P (2011). Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics, 10
[97]
Johannesson N, Olsson L, Bäckström D, Wetterhall M, Danielsson R, Bergquist J (2007). Screening for biomarkers in plasma from patients with gangrenous and phlegmonous appendicitis using CE and CEC in combination with MS. Electrophoresis, 28(9): 1435-1443
CrossRef Pubmed Google scholar
[98]
Jones P, Côté R G, Cho S Y, Klie S, Martens L, Quinn A F, Thorneycroft D, Hermjakob H (2007). PRIDE: new developments and new datasets. Nucleic Acids Res, 36(Database Database issue): D878-D883
CrossRef Pubmed Google scholar
[99]
Jorge I, Navarro P, Martínez-Acedo P, Núñez E, Serrano H, Alfranca A, Redondo J M, Vázquez J (2009). Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Mol Cell Proteomics, 8(5): 1130-1149
CrossRef Pubmed Google scholar
[100]
Kalume D E, Molina H, Pandey A (2003). Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol, 7(1): 64-69
CrossRef Pubmed Google scholar
[101]
Keene S D, Greco T M, Parastatidis I, Lee S H, Hughes E G, Balice-Gordon R J, Speicher D W, Ischiropoulos H (2009). Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics, 9(3): 768-782
CrossRef Pubmed Google scholar
[102]
Kellie J F, Catherman A D, Durbin K R, Tran J C, Tipton J D, Norris J L, Witkowski C E 2nd, Thomas P M, Kelleher N L (2012). Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal Chem, 84(1): 209-215
CrossRef Pubmed Google scholar
[103]
Klampfl C W (2009). CE with MS detection: a rapidly developing hyphenated technique. Electrophoresis, 30(S1 Suppl 1): S83-S91
CrossRef Pubmed Google scholar
[104]
Koutroukides T A, Guest P C, Leweke F M, Bailey D M, Rahmoune H, Bahn S, Martins-de-Souza D (2011). Characterization of the human serum depletome by label-free shotgun proteomics. J Sep Sci, 34(13): 1621-1626
CrossRef Pubmed Google scholar
[105]
Krishnamurthy D, Levin Y, Harris L W, Umrania Y, Bahn S, Guest P C (2011). Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry. Proteomics, 11(3): 495-500
CrossRef Pubmed Google scholar
[106]
Kumar C, Mann M (2009). Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett, 583(11): 1703-1712
CrossRef Pubmed Google scholar
[107]
Kuwabara Y, Mine K, Katayama A, Inagawa T, Akira S, Takeshita T (2009). Proteomic analyses of recombinant human follicle-stimulating hormone and urinary-derived gonadotropin preparations. J Reprod Med, 54(8): 459-466
Pubmed
[108]
Li L, Garden R W, Sweedler J V (2000). Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol, 18(4): 151-160
CrossRef Pubmed Google scholar
[109]
Li L, Sweedler J V (2008). Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu Rev Anal Chem (Palo Alto Calif), 1(1): 451-483
CrossRef Pubmed Google scholar
[110]
Li Y, Champion M M, Sun L, Champion P A, Wojcik R, Dovichi N J (2012). Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem, 84(3): 1617-1622
CrossRef Pubmed Google scholar
[111]
Lilley K S, Razzaq A, Dupree P (2002). Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol, 6(1): 46-50
CrossRef Pubmed Google scholar
[112]
Lippi G, Guidi G C, Mattiuzzi C, Plebani M (2006). Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med, 44(4): 358-365
CrossRef Pubmed Google scholar
[113]
Liu H, Håkansson K (2006). Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations. Anal Chem, 78(21): 7570-7576
CrossRef Pubmed Google scholar
[114]
Liu H, Lam L, Dasgupta P K (2011a). Expanding the linear dynamic range for multiple reaction monitoring in quantitative liquid chromatography-tandem mass spectrometry utilizing natural isotopologue transitions. Talanta, 87: 307-310
CrossRef Pubmed Google scholar
[115]
Liu H, Sadygov R G, Yates J R 3rd (2004a). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem, 76(14): 4193-4201
CrossRef Pubmed Google scholar
[116]
Liu J, Erassov A, Halina P, Canete M, Nguyen D V, Chung C, Cagney G, Ignatchenko A, Fong V, Emili A (2008). Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications. Anal Chem, 80(20): 7846-7854
CrossRef Pubmed Google scholar
[117]
Liu J, Wang H, Cooks R G, Ouyang Z (2011b). Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry. Anal Chem, 83(20): 7608-7613
CrossRef Pubmed Google scholar
[118]
Liu J, Wang H, Manicke N E, Lin J M, Cooks R G, Ouyang Z (2010). Development, characterization, and application of paper spray ionization. Anal Chem, 82(6): 2463-2471
CrossRef Pubmed Google scholar
[119]
Liu T, Qian W J, Gritsenko M A, Xiao W, Moldawer L L, Kaushal A, Monroe M E, Varnum S M, Moore R J, Purvine S O, Maier R V, Davis R W, Tompkins R G, Camp D G 2nd, Smith R D, and the Inflammation and the Host Response to Injury Large Scale Collaborative Research Programm (2006a). High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics, 5(10): 1899-1913
CrossRef Pubmed Google scholar
[120]
Liu T, Qian W J, Mottaz H M, Gritsenko M A, Norbeck A D, Moore R J, Purvine S O, Camp D G 2nd, Smith R D (2006b). Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics, 5(11): 2167-2174
CrossRef Pubmed Google scholar
[121]
Liu X, Plasencia M, Ragg S, Valentine S J, Clemmer D E (2004b). Development of high throughput dispersive LC-ion mobility-TOFMS techniques for analysing the human plasma proteome. Brief Funct Genomics Proteomics, 3(2): 177-186
CrossRef Pubmed Google scholar
[122]
Lopez M F, Kuppusamy R, Sarracino D A, Prakash A, Athanas M, Krastins B, Rezai T, Sutton J N, Peterman S, Nicolaides K (2011). Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester Trisomy 21 maternal serum. J Proteome Res, 10(1): 133-142
CrossRef Pubmed Google scholar
[123]
Ma M, Chen R, Ge Y, He H, Marshall A G, Li L (2009). Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal Chem, 81(1): 240-247
CrossRef Pubmed Google scholar
[124]
Maccarrone G, Milfay D, Birg I, Rosenhagen M, Holsboer F, Grimm R, Bailey J, Zolotarjova N, Turck C W (2004). Mining the human cerebrospinal fluid proteome by immunodepletion and shotgun mass spectrometry. Electrophoresis, 25(14): 2402-2412
CrossRef Pubmed Google scholar
[125]
Makridakis M, Vlahou A (2010). Secretome proteomics for discovery of cancer biomarkers. J Proteomics, 73(12): 2291-2305
CrossRef Pubmed Google scholar
[126]
Marimuthu A, O’Meally R N, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar D S, Pinto S M, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole R N, Harsha H C, Pandey A (2011). A comprehensive map of the human urinary proteome. J Proteome Res, 10(6): 2734-2743
CrossRef Pubmed Google scholar
[127]
Marouga R, David S, Hawkins E (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem, 382(3): 669-678
CrossRef Pubmed Google scholar
[128]
Martins-de-Souza D, Guest P C, Guest F L, Bauder C, Rahmoune H, Pietsch S, Roeber S, Kretzschmar H, Mann D, Baborie A, Bahn S (2012). Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometry-data-independent analyses. Proteomics, 12(3): 500-504
CrossRef Pubmed Google scholar
[129]
Matsubara J, Honda K, Ono M, Sekine S, Tanaka Y, Kobayashi M, Jung G, Sakuma T, Nakamori S, Sata N, Nagai H, Ioka T, Okusaka T, Kosuge T, Tsuchida A, Shimahara M, Yasunami Y, Chiba T, Yamada T (2011). Identification of adipophilin as a potential plasma biomarker for colorectal cancer using label-free quantitative mass spectrometry and protein microarray. Cancer Epidemiol Biomarkers Prev, 20(10): 2195-2203
CrossRef Pubmed Google scholar
[130]
McAlister G C, Phanstiel D, Wenger C D, Lee M V, Coon J J (2010). Analysis of tandem mass spectra by FTMS for improved large-scale proteomics with superior protein quantification. Anal Chem, 82(1): 316-322
CrossRef Pubmed Google scholar
[131]
McEwen C N, Larsen B S, Trimpin S (2010). Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions. Anal Chem, 82(12): 4998-5001
CrossRef Pubmed Google scholar
[132]
Menschaert G, Vandekerckhove T T, Baggerman G, Schoofs L, Luyten W, Van Criekinge W (2010). Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res, 9(5): 2051-2061
CrossRef Pubmed Google scholar
[133]
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning, S (2011). Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics, 10: M111 011015
[134]
Miliotis T, Ali L, Palm J E, Lundqvist A J, Ahnoff M, Andersson T B, Hilgendorf C (2011). Development of a highly sensitive method using liquid chromatography-multiple reaction monitoring to quantify membrane P-glycoprotein in biological matrices and relationship to transport function. Drug Metab Dispos, 39(12): 2440-2449
CrossRef Pubmed Google scholar
[135]
Mischak H, Delles C, Klein J, Schanstra J P (2010). Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv Chronic Kidney Dis, 17(6): 493-506
CrossRef Pubmed Google scholar
[136]
Molina H, Matthiesen R, Kandasamy K, Pandey A (2008). Comprehensive comparison of collision induced dissociation and electron transfer dissociation. Anal Chem, 80(13): 4825-4835
CrossRef Pubmed Google scholar
[137]
Moore N H, Costa L G, Shaffer S A, Goodlett D R, Guizzetti M (2009). Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem, 108(4): 891-908
CrossRef Pubmed Google scholar
[138]
Murakoshi Y, Honda K, Sasazuki S, Ono M, Negishi A, Matsubara J, Sakuma T, Kuwabara H, Nakamori S, Sata N, Nagai H, Ioka T, Okusaka T, Kosuge T, Shimahara M, Yasunami Y, Ino Y, Tsuchida A, Aoki T, Tsugane S, Yamada T (2011). Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray. Cancer Sci, 102(3): 630-638
CrossRef Pubmed Google scholar
[139]
Nagaraj N, D’Souza R C, Cox J, Olsen J V, Mann M (2010). Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res, 9(12): 6786-6794
CrossRef Pubmed Google scholar
[140]
Neilson K A, Ali N A, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter S C, Haynes P A (2011). Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 11(4): 535-553
CrossRef Pubmed Google scholar
[141]
Neue K, Mormann M, Peter-Katalinić J, Pohlentz G (2011). Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J Proteome Res, 10(5): 2248-2260
CrossRef Pubmed Google scholar
[142]
Oh-Ishi M, Maeda T (2002). Separation techniques for high-molecular-mass proteins. J Chromatogr B Analyt Technol Biomed Life Sci, 771(1-2): 49-66
CrossRef Pubmed Google scholar
[143]
Olsen J V, Macek B, Lange O, Makarov A, Horning S, Mann M (2007). Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods, 4(9): 709-712
CrossRef Pubmed Google scholar
[144]
Olsen J V, Vermeulen M, Santamaria A, Kumar C, Miller M L, Jensen L J, Gnad F, Cox J, Jensen T S, Nigg E A, Brunak S, Mann M (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal, 3(104): ra3
CrossRef Pubmed Google scholar
[145]
Omenn G S, States D J, Adamski M, Blackwell T W, Menon R, Hermjakob H, Apweiler R, Haab B B, Simpson R J, Eddes J S, Kapp E A, Moritz R L, Chan D W, Rai A J, Admon A, Aebersold R, Eng J, Hancock W S, Hefta S A, Meyer H, Paik Y K, Yoo J S, Ping P, Pounds J, Adkins J, Qian X, Wang R, Wasinger V, Wu C Y, Zhao X, Zeng R, Archakov A, Tsugita A, Beer I, Pandey A, Pisano M, Andrews P, Tammen H, Speicher D W, Hanash S M (2005). Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics, 5(13): 3226-3245
CrossRef Pubmed Google scholar
[146]
Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 1(5): 376-386
CrossRef Pubmed Google scholar
[147]
Ong S E, Kratchmarova I, Mann M (2003). Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2(2): 173-181
CrossRef Pubmed Google scholar
[148]
Ossola R, Schiess R, Picotti P, Rinner O, Reiter L, Aebersold R (2011). Biomarker validation in blood specimens by selected reaction monitoring mass spectrometry of N-glycosites. Methods Mol Biol, 728: 179-194
CrossRef Pubmed Google scholar
[149]
Ottervald J, Franzén B, Nilsson K, Andersson L I, Khademi M, Eriksson B, Kjellström S, Marko-Varga G, Végvári A, Harris R A, Laurell T, Miliotis T, Matusevicius D, Salter H, Ferm M, Olsson T (2010). Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J Proteomics, 73(6): 1117-1132
CrossRef Pubmed Google scholar
[150]
Ow S Y, Salim M, Noirel J, Evans C, Wright P C (2011). Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics, 11(11): 2341-2346
CrossRef Pubmed Google scholar
[151]
Perkins D N, Pappin D J, Creasy D M, Cottrell J S (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18): 3551-3567
CrossRef Pubmed Google scholar
[152]
Pimienta G, Chaerkady R, Pandey A (2009). SILAC for global phosphoproteomic analysis. Methods Mol Biol, 527: 107-116, x (x.)
CrossRef Pubmed Google scholar
[153]
Prentice R L, Paczesny S, Aragaki A, Amon L M, Chen L, Pitteri S J, McIntosh M, Wang P, Buson Busald T, Hsia J (2010). Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome, Med 2, 48
[154]
Rai A J, Gelfand C A, Haywood B C, Warunek D J, Yi J, Schuchard M D, Mehigh R J, Cockrill S L, Scott G B, Tammen H, Schulz-Knappe P, Speicher D W, Vitzthum F, Haab B B, Siest G, Chan D W (2005). HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics, 5(13): 3262-3277
CrossRef Pubmed Google scholar
[155]
Rajagopal M U, Hathout Y, MacDonald T J, Kieran M W, Gururangan S, Blaney S M, Phillips P, Packer R, Gordish-Dressman H, Rood B R (2011). Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: A pediatric brain tumor consortium study. Proteomics, 11(5): 935-943
CrossRef Pubmed Google scholar
[156]
Ramos A A, Yang H, Rosen L E, Yao X (2006). Tandem parallel fragmentation of peptides for mass spectrometry. Anal Chem, 78(18): 6391-6397
CrossRef Pubmed Google scholar
[157]
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman L F, Galasko D R, Jutel M, Karydas A, Kaye J A, Leszek J, Miller B L, Minthon L, Quinn J F, Rabinovici G D, Robinson W H, Sabbagh M N, So Y T, Sparks D L, Tabaton M, Tinklenberg J, Yesavage J A, Tibshirani R, Wyss-Coray T (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med, 13(11): 1359-1362
CrossRef Pubmed Google scholar
[158]
Righetti P G, Fasoli E, Boschetti E (2011). Combinatorial peptide ligand libraries: the conquest of the ‘hidden proteome’ advances at great strides. Electrophoresis, 32(9): 960-966
CrossRef Pubmed Google scholar
[159]
Ringman J M, Schulman H, Becker C, Jones T, Bai Y, Immermann F, Cole G, Sokolow S, Gylys K, Geschwind D H, Cummings J L, Wan H I (2012). Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol, 69(1): 96-104
CrossRef Pubmed Google scholar
[160]
Roche S, Gabelle A, Lehmann S (2008). Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers. Proteomics Clin Appl, 2(3): 428-436
CrossRef Pubmed Google scholar
[161]
Ross P L, Huang Y N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D J (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 3(12): 1154-1169
CrossRef Pubmed Google scholar
[162]
Rozek W, Ricardo-Dukelow M, Holloway S, Gendelman H E, Wojna V, Melendez L M, Ciborowski P (2007). Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res, 6(11): 4189-4199
CrossRef Pubmed Google scholar
[163]
Rucevic M, Hixson D, Josic D (2011). Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis, 32(13): 1549-1564
CrossRef Pubmed Google scholar
[164]
Rudrabhatla P, Jaffe H, Pant H C (2011). Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer’s NFTs. FASEB J, 25(11): 3896-3905
CrossRef Pubmed Google scholar
[165]
Sáez-Valero J, Fodero L R, Sjögren M, Andreasen N, Amici S, Gallai V, Vanderstichele H, Vanmechelen E, Parnetti L, Blennow K, Small D H (2003). Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res, 72(4): 520-526
CrossRef Pubmed Google scholar
[166]
Scatena R, Bottoni P, Pontoglio A, Giardina B (2010). Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl, 4(2): 143-158
CrossRef Pubmed Google scholar
[167]
Schiess R, Wollscheid B, Aebersold R (2009). Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol, 3(1): 33-44
CrossRef Pubmed Google scholar
[168]
Schmidt A, Kellermann J, Lottspeich F (2005). A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics, 5(1): 4-15
CrossRef Pubmed Google scholar
[169]
Scholz B, Alm H, Mattsson A, Nilsson A, Kultima K, Savitski M M, Fälth M, Sköld K, Brunström B, Andren P E, Dencker L (2010). Neuropeptidomic analysis of the embryonic Japanese quail diencephalon. BMC Dev Biol, 10(1): 30
CrossRef Pubmed Google scholar
[170]
Schutzer S E, Liu T, Natelson B H, Angel T E, Schepmoes A A, Purvine S O, Hixson K K, Lipton M S, Camp D G, Coyle P K, Smith R D, Bergquist J (2010). Establishing the proteome of normal human cerebrospinal fluid. PLoS ONE, 5(6): e10980
CrossRef Pubmed Google scholar
[171]
Searle B C (2010). Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics, 10(6): 1265-1269
CrossRef Pubmed Google scholar
[172]
Second T P, Blethrow J D, Schwartz J C, Merrihew G E, MacCoss M J, Swaney D L, Russell J D, Coon J J, Zabrouskov V (2009). Dual-pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures. Anal Chem, 81(18): 7757-7765
CrossRef Pubmed Google scholar
[173]
Seeley E H, Caprioli R M (2011). MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol, 29(3): 136-143
CrossRef Pubmed Google scholar
[174]
Selvaraju S, Rassi Z E (2012). Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis—an update covering the period 2008-2011. Electrophoresis, 33(1): 74-88
CrossRef Pubmed Google scholar
[175]
Shen Y, Tolić N, Xie F, Zhao R, Purvine S O, Schepmoes A A, Moore R J, Anderson G A, Smith R D (2011). Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res, 10(9): 3929-3943
CrossRef Pubmed Google scholar
[176]
Sheta E A, Appel S H, Goldknopf I L (2006). 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev Proteomics, 3(1): 45-62
CrossRef Pubmed Google scholar
[177]
Shteynberg D, Deutsch E W, Lam H, Eng J K, Sun Z, Tasman N, Mendoza L, Moritz R L, Aebersold R, Nesvizhskii A I (2011). iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics, 10: M111 007690
[178]
Silva J C, Denny R, Dorschel C A, Gorenstein M, Kass I J, Li G Z, McKenna T, Nold M J, Richardson K, Young P, Geromanos S (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem, 77(7): 2187-2200
CrossRef Pubmed Google scholar
[179]
Silveyra M X, Cuadrado-Corrales N, Marcos A, Barquero M S, Rábano A, Calero M, Sáez-Valero J (2006). Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem, 96(1): 97-104
CrossRef Pubmed Google scholar
[180]
Simpson D C, Smith R D (2005). Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis, 26(7-8): 1291-1305
CrossRef Pubmed Google scholar
[181]
Singh S, Springer M, Steen J, Kirschner M W, Steen H (2009). FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J Proteome Res, 8(5): 2201-2210
CrossRef Pubmed Google scholar
[182]
Sjödin M O, Bergquist J, Wetterhall M (2010). Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci, 878(22): 2003-2012
CrossRef Pubmed Google scholar
[183]
Snovida S I, Bodnar E D, Viner R, Saba J, Perreault H (2010). A simple cellulose column procedure for selective enrichment of glycopeptides and characterization by nano LC coupled with electron-transfer and high-energy collisional-dissociation tandem mass spectrometry. Carbohydr Res, 345(6): 792-801
CrossRef Pubmed Google scholar
[184]
Sobott F, Watt S J, Smith J, Edelmann M J, Kramer H B, Kessler B M (2009). Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom, 20(9): 1652-1659
CrossRef Pubmed Google scholar
[185]
Song C, Ye M, Han G, Jiang X, Wang F, Yu Z, Chen R, Zou H (2010). Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem, 82(1): 53-56
CrossRef Pubmed Google scholar
[186]
Spirin V, Shpunt A, Seebacher J, Gentzel M, Shevchenko A, Gygi S, Sunyaev S (2011). Assigning spectrum-specific P-values to protein identifications by mass spectrometry. Bioinformatics, 27(8): 1128-1134
CrossRef Pubmed Google scholar
[187]
Staes A, Demol H, Van Damme J, Martens L, Vandekerckhove J, Gevaert K (2004). Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res, 3(4): 786-791
CrossRef Pubmed Google scholar
[188]
Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M (2008). MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J Proteome Res, 7(3): 969-978
CrossRef Pubmed Google scholar
[189]
Stoeckli M, Chaurand P, Hallahan D E, Caprioli R M (2001). Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med, 7(4): 493-496
CrossRef Pubmed Google scholar
[190]
Swaney D L, McAlister G C, Coon J J (2008). Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods, 5(11): 959-964
CrossRef Pubmed Google scholar
[191]
Syka J E, Coon J J, Schroeder M J, Shabanowitz J, Hunt D F (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA, 101(26): 9528-9533
CrossRef Pubmed Google scholar
[192]
Tammen H, Schulte I, Hess R, Menzel C, Kellmann M, Mohring T, Schulz-Knappe P (2005). Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics, 5(13): 3414-3422
CrossRef Pubmed Google scholar
[193]
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C (2003). Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 75(8): 1895-1904
CrossRef Pubmed Google scholar
[194]
Tian Q, Price N D, Hood L (2012). Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med, 271(2): 111-121
CrossRef Pubmed Google scholar
[195]
Tian Y, Zhang H (2010). Glycoproteomics and clinical applications. Proteomics Clin Appl, 4(2): 124-132
CrossRef Pubmed Google scholar
[196]
Ting L, Rad R, Gygi S P, Haas W (2011). MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods, 8(11): 937-940
CrossRef Pubmed Google scholar
[197]
Trimpin S, Inutan E D, Herath T N, McEwen C N (2010). Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol Cell Proteomics, 9(2): 362-367
CrossRef Pubmed Google scholar
[198]
Valentine S J, Ewing M A, Dilger J M, Glover M S, Geromanos S, Hughes C, Clemmer D E (2011). Using ion mobility data to improve peptide identification: intrinsic amino acid size parameters. J Proteome Res, 10(5): 2318-2329
CrossRef Pubmed Google scholar
[199]
Valentine S J, Liu X, Plasencia M D, Hilderbrand A E, Kurulugama R T, Koeniger S L, Clemmer D E (2005). Developing liquid chromatography ion mobility mass spectometry techniques. Expert Rev Proteomics, 2(4): 553-565
CrossRef Pubmed Google scholar
[200]
Valentine S J, Plasencia M D, Liu X, Krishnan M, Naylor S, Udseth H R, Smith R D, Clemmer D E (2006). Toward plasma proteome profiling with ion mobility-mass spectrometry. J Proteome Res, 5(11): 2977-2984
CrossRef Pubmed Google scholar
[201]
Van Dorsselaer A, Carapito C, Delalande F, Schaeffer-Reiss C, Thierse D, Diemer H, McNair D S, Krewski D, Cashman N R (2011). Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach. PLoS ONE, 6(3): e17815
CrossRef Pubmed Google scholar
[202]
Vilim F S, Sasaki K, Rybak J, Alexeeva V, Cropper E C, Jing J, Orekhova I V, Brezina V, Price D, Romanova E V, Rubakhin S S, Hatcher N, Sweedler J V, Weiss K R (2010). Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci, 30(1): 131-147
CrossRef Pubmed Google scholar
[203]
Wagner P D, Vu N D (2000). Histidine to aspartate phosphotransferase activity of nm23 proteins: phosphorylation of aldolase C on Asp-319. Biochem J, 346(3): 623-630
CrossRef Pubmed Google scholar
[204]
Wang B, Lietz C B, Inutan E D, Leach S M, Trimpin S (2011a). Producing highly charged ions without solvent using laserspray ionization: a total solvent-free analysis approach at atmospheric pressure. Anal Chem, 83(11): 4076-4084
CrossRef Pubmed Google scholar
[205]
Wang H, Liu J, Cooks R G, Ouyang Z (2010). Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed Engl, 49(5): 877-880
Pubmed
[206]
Wang H, Manicke N E, Yang Q, Zheng L, Shi R, Cooks R G, Ouyang Z (2011b). Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem, 83(4): 1197-1201
CrossRef Pubmed Google scholar
[207]
Wang W, Zhou H, Lin H, Roy S, Shaler T A, Hill L R, Norton S, Kumar P, Anderle M, Becker C H (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem, 75(18): 4818-4826
CrossRef Pubmed Google scholar
[208]
Wang Y K, Ma Z, Quinn D F, Fu E W (2002). Inverse 15N-metabolic labeling/mass spectrometry for comparative proteomics and rapid identification of protein markers/targets. Rapid Commun Mass Spectrom, 16(14): 1389-1397
CrossRef Pubmed Google scholar
[209]
Washburn M P, Wolters D, Yates J R 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 19(3): 242-247
CrossRef Pubmed Google scholar
[210]
Weekes M P, Antrobus R, Lill J R, Duncan L M, Hör S, Lehner P J (2010). Comparative analysis of techniques to purify plasma membrane proteins. J Biomol Tech, 21(3): 108-115
Pubmed
[211]
Wei H, Nolkrantz K, Parkin M C, Chisolm C N, O’Callaghan J P, Kennedy R T (2006). Identification and quantification of neuropeptides in brain tissue by capillary liquid chromatography coupled off-line to MALDI-TOF and MALDI-TOF/TOF-MS. Anal Chem, 78(13): 4342-4351
CrossRef Pubmed Google scholar
[212]
Wei X, Dulberger C, Li L (2010a). Characterization of murine brain membrane glycoproteins by detergent assisted lectin affinity chromatography. Anal Chem, 82(15): 6329-6333
CrossRef Google scholar
[213]
Wei X, Herbst A, Ma D, Aiken J, Li L (2010b). A quantitative proteomic approach to prion disease biomarker research: delving into the glycoproteome. J Proteome Res, 10(6): 2687-2702
CrossRef Pubmed Google scholar
[214]
Wei X, Li L (2009). Comparative glycoproteomics: approaches and applications. Brief Funct Genomics Proteomics, 8(2): 104-113
CrossRef Pubmed Google scholar
[215]
Wenner B R, Lovell M A, Lynn B C (2004). Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. J Proteome Res, 3(1): 97-103
CrossRef Pubmed Google scholar
[216]
Wilhelm M, Kirchner M, Steen J A, Steen H (2012). mz5: space- and time-efficient storage of mass spectrometry data sets. Mol Cell Proteomics 11: O111 011379.
[217]
Winter D, Steen H (2011). Optimization of cell lysis and protein digestion protocols for the analysis of HeLa S3 cells by LC-MS/MS. Proteomics, 11(24): 4726-4730
CrossRef Pubmed Google scholar
[218]
Wiśniewski J R (2011). Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids, 41(2): 223-233
CrossRef Pubmed Google scholar
[219]
Wong M, Schlaggar B L, Buller R S, Storch G A, Landt M (2000). Cerebrospinal fluid protein concentration in pediatric patients: defining clinically relevant reference values. Arch Pediatr Adolesc Med, 154(8): 827-831
Pubmed
[220]
Xia Y, Gunawardena H P, Erickson D E, McLuckey S A (2007). Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. J Am Chem Soc, 129(40): 12232-12243
CrossRef Pubmed Google scholar
[221]
Xiang F, Ye H, Chen R, Fu Q, Li L (2010). N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem, 82(7): 2817-2825
CrossRef Pubmed Google scholar
[222]
Xiang Y, Koomen J M (2012). Evaluation of direct Infusion-multiple reaction monitoring mass spectrometry for quantification of heat shock proteins. Anal Chem
[223]
Xie F, Liu T, Qian W J, Petyuk V A, Smith R D (2011). Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem, 286(29): 25443-25449
CrossRef Pubmed Google scholar
[224]
Ye X, Luke B, Andresson T, Blonder J (2009). 18O stable isotope labeling in MS-based proteomics. Brief Funct Genomics Proteomics, 8(2): 136-144
CrossRef Pubmed Google scholar
[225]
Yoo H J, Wang N, Zhuang S, Song H, Håkansson K (2011). Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. J Am Chem Soc, 133(42): 16790-16793
CrossRef Pubmed Google scholar
[226]
You J S, Gelfanova V, Knierman M D, Witzmann F A, Wang M, Hale J E (2005). The impact of blood contamination on the proteome of cerebrospinal fluid. Proteomics, 5(1): 290-296
CrossRef Pubmed Google scholar
[227]
Ytting H, Christensen I J, Thiel S, Jensenius J C, Svendsen M N, Nielsen L, Lottenburger T, Nielsen H J (2007). Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise. Scand J Immunol, 66(4): 458-464
CrossRef Pubmed Google scholar
[228]
Yuan X, Desiderio D M (2005a). Human cerebrospinal fluid peptidomics. J Mass Spectrom, 40(2): 176-181
CrossRef Pubmed Google scholar
[229]
Yuan X, Desiderio D M (2005b). Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci, 815(1-2): 179-189
CrossRef Pubmed Google scholar
[230]
Yuan X, Desiderio D M (2005c). Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics, 5(2): 541-550
CrossRef Pubmed Google scholar
[231]
Yuki D, Sugiura Y, Zaima N, Akatsu H, Hashizume Y, Yamamoto T, Fujiwara M, Sugiyama K, Setou M (2011). Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience, 193: 44-53
CrossRef Pubmed Google scholar
[232]
Zarei M, Sprenger A, Metzger F, Gretzmeier C, Dengjel J (2011). Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. J Proteome Res, 10(8): 3474-3483
CrossRef Pubmed Google scholar
[233]
Zhang G, Neubert T A (2009). Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol Biol, 527: 79-92, xi (xi.)
CrossRef Pubmed Google scholar
[234]
Zhang H, Guo T, Li X, Datta A, Park J E, Yang J, Lim S K, Tam J P, Sze S K (2011a). Simultaneous characterization of glyco- and phosphoproteomes of mouse brain membrane proteome with electrostatic repulsion hydrophilic interaction chromatography. Mol Cell Proteomics, 9(4): 635-647
CrossRef Pubmed Google scholar
[235]
Zhang J, Goodlett D R, Montine T J (2005). Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. J Alzheimers Dis, 8(4): 377-386
Pubmed
[236]
Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie 000, G A 000, Ma B (2011b). PEAKS DB: De Novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics
[237]
Zhang Q, Faca V, Hanash S (2011c). Mining the plasma proteome for disease applications across seven logs of protein abundance. J Proteome Res, 10(1): 46-50
CrossRef Pubmed Google scholar
[238]
Zhang Z, Xu W, Manicke N E, Cooks R G, Ouyang Z (2012). Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem, 84(2): 931-938
CrossRef Pubmed Google scholar
[239]
Zhou F, Sikorski T W, Ficarro S B, Webber J T, Marto J A (2011). Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms. Anal Chem, 83(18): 6996-7005
CrossRef Pubmed Google scholar
[240]
Zhou W, Ross M M, Tessitore A, Ornstein D, Vanmeter A, Liotta L A, Petricoin E F 3rd (2009). An initial characterization of the serum phosphoproteome. J Proteome Res, 8(12): 5523-5531
CrossRef Pubmed Google scholar
[241]
Zhu W, Smith J W, Huang C M (2010). Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol, 2010: 1
CrossRef Pubmed Google scholar
[242]
Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M (2008). Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res, 7(1): 386-399
CrossRef Pubmed Google scholar
[243]
Zubarev R A, Kelleher N L, McLafferty F W (1998). Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J Am Chem Soc, 120(13): 3265-3266
CrossRef Google scholar
[244]
Zuberovic A, Hanrieder J, Hellman U, Bergquist J, Wetterhall M (2008). Proteome profiling of human cerebrospinal fluid: exploring the potential of capillary electrophoresis with surface modified capillaries for analysis of complex biological samples. Eur J Mass Spectrom (Chichester, Eng), 14(2): 249-260
CrossRef Pubmed Google scholar
[245]
Zybailov B, Coleman M K, Florens L, Washburn M P (2005). Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem, 77(19): 6218-6224
CrossRef Pubmed Google scholar

Acknowledgments

Preparation of this manuscript was supported in part by the University of Wisconsin Graduate School, Wisconsin Alzheimer’s Disease Research Center Pilot Grant, and a Department of Defense Pilot Award. L.L. acknowledges an H. I. Romnes Faculty Fellowship.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(538 KB)

Accesses

Citations

Detail

Sections
Recommended

/