Sequestosome 1/p62: a multi-domain protein with multi-faceted functions

Xiaoyan LIU, Jozsef GAL, Haining ZHU

PDF(387 KB)
PDF(387 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (3) : 189-201. DOI: 10.1007/s11515-012-1217-z
REVIEW
REVIEW

Sequestosome 1/p62: a multi-domain protein with multi-faceted functions

Author information +
History +

Abstract

The sequestosome 1/p62 protein has been implicated in the regulation of a multitude of cellular processes such as NF-кB signaling, NRF2-driven oxidative stress response, protein turnover through the ubiquitin-proteasome pathway and the autophagosome/lysosome pathway, apoptosis and cellular metabolism. The domain structure of p62 also reflects this functional complexity since the protein appears to be a mosaic of protein interaction domains and motifs. Deregulation of the level and function of p62 and/or p62 mutations have been linked to a number of human diseases including Paget’s disease of the bone, obesity, liver diseases, tumorigenesis and neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer’s disease. In this article, we review the current understanding of the involvement of p62 in cellular processes under physiologic and pathological conditions.

Keywords

sequestosome 1/p62 / autophagy / ubiquitin-proteasome system / NF-κB signaling / Paget′s disease of bone / amyotrophic lateral sclerosis

Cite this article

Download citation ▾
Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions. Front Biol, 2012, 7(3): 189‒201 https://doi.org/10.1007/s11515-012-1217-z

References

[1]
Aggarwal B B (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 3(9): 745–756
CrossRef Pubmed Google scholar
[2]
Babu J R, Geetha T, Wooten M W (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 94(1): 192–203
CrossRef Pubmed Google scholar
[3]
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
CrossRef Pubmed Google scholar
[4]
Blonska M, Shambharkar P B, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem, 280(52): 43056–43063
CrossRef Pubmed Google scholar
[5]
Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pagès G, Pouysségur J, Le Marchand-Brustel Y, Binétruy B (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 54(2): 402–411
CrossRef Pubmed Google scholar
[6]
Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binétruy B (2002). Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J, 361(3): 621–627
CrossRef Pubmed Google scholar
[7]
Braak H, Ludolph A, Thal D R, Del Tredici K (2010). Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol, 120(1): 67–74
CrossRef Pubmed Google scholar
[8]
Cavey J R, Ralston S H, Sheppard P W, Ciani B, Gallagher T R, Long J E, Searle M S, Layfield R (2006). Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int, 78(5): 271–277
CrossRef Pubmed Google scholar
[9]
Chamoux E, Couture J, Bisson M, Morissette J, Brown J P, Roux S (2009). The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol, 23(10): 1668–1680
CrossRef Pubmed Google scholar
[10]
Ciani B, Layfield R, Cavey J R, Sheppard P W, Searle M S (2003). Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem, 278(39): 37409–37412
CrossRef Pubmed Google scholar
[11]
Copple I M, Lister A, Obeng A D, Kitteringham N R, Jenkins R E, Layfield R, Foster B J, Goldring C E, Park B K (2010). Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem, 285(22): 16782–16788
CrossRef Pubmed Google scholar
[12]
Cullinan S B, Gordan J D, Jin J, Harper J W, Diehl J A (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 24(19): 8477–8486
CrossRef Pubmed Google scholar
[13]
Darnay B G, Besse A, Poblenz A T, Lamothe B, Jacoby J J (2007). TRAFs in RANK signaling. Adv Exp Med Biol, 597: 152–159
CrossRef Pubmed Google scholar
[14]
de Bie P, Ciechanover A (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ, 18(9): 1393–1402
CrossRef Pubmed Google scholar
[15]
Deng H X, Zhai H, Bigio E H, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T (2010). FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol, 67(6): 739–748
Pubmed
[16]
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen Z J (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103(2): 351–361
CrossRef Pubmed Google scholar
[17]
Denk H, Stumptner C, Fuchsbichler A, Müller T, Farr G, Müller W, Terracciano L, Zatloukal K (2006). Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non-neoplastic hepatocytes related? J Pathol, 208(5): 653–661
CrossRef Pubmed Google scholar
[18]
Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell, 44(1): 134–146
CrossRef Pubmed Google scholar
[19]
Duran A, Linares J F, Galvez A S, Wikenheiser K, Flores J M, Diaz-Meco M T, Moscat J (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell, 13(4): 343–354
CrossRef Pubmed Google scholar
[20]
Durán A, Serrano M, Leitges M, Flores J M, Picard S, Brown J P, Moscat J, Diaz-Meco M T (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell, 6(2): 303–309
CrossRef Pubmed Google scholar
[21]
Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell, 22(2): 245–257
CrossRef Pubmed Google scholar
[22]
Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo M L, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi S M, Di Fede G, Sferrazza C, Rini G B, Melchiorre D, Matucci-Cerinic M, Brandi M L (2004). Two novel mutations at exon 8 of the Sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res, 19(6): 1013–1017
CrossRef Pubmed Google scholar
[23]
Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri M F, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi M L, and the GenePage Project (2009). Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int, 84(1): 20–37
CrossRef Pubmed Google scholar
[24]
Fecto F, Yan J, Vemula S P, Liu E, Yang Y, Chen W, Zheng J G, Shi Y, Siddique N, Arrat H, Donkervoort S, Ajroud-Driss S, Sufit R L, Heller S L, Deng H X, Siddique T (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol, 68(11): 1440–1446
CrossRef Pubmed Google scholar
[25]
Feng Y, Longmore G D (2005). The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex. Mol Cell Biol, 25(10): 4010–4022
CrossRef Pubmed Google scholar
[26]
Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet, 18(24): 4868–4878
CrossRef Pubmed Google scholar
[27]
Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher E M, Isaacs A, Brech A, Stenmark H, Simonsen A (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol, 179(3): 485–500
CrossRef Pubmed Google scholar
[28]
Gal J, Ström A L, Kilty R, Zhang F, Zhu H (2007). p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem, 282(15): 11068–11077
CrossRef Pubmed Google scholar
[29]
Gal J, Ström A L, Kwinter D M, Kilty R, Zhang J, Shi P, Fu W, Wooten M W, Zhu H (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem, 111(4): 1062–1073
CrossRef Pubmed Google scholar
[30]
Geetha T, Jiang J, Wooten M W (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell, 20(2): 301–312
CrossRef Pubmed Google scholar
[31]
Geetha T, Seibenhener M L, Chen L, Madura K, Wooten M W (2008). p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun, 374(1): 33–37
CrossRef Pubmed Google scholar
[32]
Goode A, Layfield R (2010). Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol, 63(3): 199–203
CrossRef Pubmed Google scholar
[33]
Gump J M, Thorburn A (2011). Autophagy and apoptosis: what is the connection? Trends Cell Biol, 21(7): 387–392
CrossRef Pubmed Google scholar
[34]
Habelhah H, Takahashi S, Cho S G, Kadoya T, Watanabe T, Ronai Z (2004). Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J, 23(2): 322–332
CrossRef Pubmed Google scholar
[35]
Helfrich M H, Hocking L J (2008). Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys, 473(2): 172–182
CrossRef Pubmed Google scholar
[36]
Heyninck K, Beyaert R (2001). Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun, 4(5): 259–265
CrossRef Pubmed Google scholar
[37]
Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008). White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol, 116(2): 183–191
CrossRef Pubmed Google scholar
[38]
Hocking L J, Lucas G J, Daroszewska A, Cundy T, Nicholson G C, Donath J, Walsh J P, Finlayson C, Cavey J R, Ciani B, Sheppard P W, Searle M S, Layfield R, Ralston S H (2004). Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res, 19(7): 1122–1127
CrossRef Pubmed Google scholar
[39]
Hocking L J, Lucas G J, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson G C, Ward L, Bennett S T, Wuyts W, Van Hul W, Ralston S H (2002). Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet, 11(22): 2735–2739
CrossRef Pubmed Google scholar
[40]
Hou W, Han J, Lu C, Goldstein L A, Rabinowich H (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy, 6(7): 891–900
CrossRef Pubmed Google scholar
[41]
Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity, 4(4): 387–396
CrossRef Pubmed Google scholar
[42]
Hsu H, Lacey D L, Dunstan C R, Solovyev I, Colombero A, Timms E, Tan H L, Elliott G, Kelley M J, Sarosi I, Wang L, Xia X Z, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass M B, Boyle W J (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA, 96(7): 3540–3545
CrossRef Pubmed Google scholar
[43]
Ichimura Y, Kumanomidou T, Sou Y S, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem, 283(33): 22847–22857
CrossRef Pubmed Google scholar
[44]
Ishii T, Yanagawa T, Kawane T, Yuki K, Seita J, Yoshida H, Bannai S (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem Biophys Res Commun, 226(2): 456–460
CrossRef Pubmed Google scholar
[45]
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun, 236(2): 313–322
CrossRef Pubmed Google scholar
[46]
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel J D, Yamamoto M (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 13(1): 76–86
CrossRef Pubmed Google scholar
[47]
Jain A, Lamark T, Sjøttem E, Larsen K B, Awuh J A, Øvervatn A, McMahon M, Hayes J D, Johansen T (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem, 285(29): 22576–22591
CrossRef Pubmed Google scholar
[48]
Jimi E, Aoki K, Saito H, D’Acquisto F, May M J, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004). Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med, 10(6): 617–624
CrossRef Pubmed Google scholar
[49]
Jin W, Chang M, Paul E M, Babu G, Lee A J, Reiley W, Wright A, Zhang M, You J, Sun S C (2008). Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest, 118(5): 1858–1866
CrossRef Pubmed Google scholar
[50]
Jin Z, Li Y, Pitti R, Lawrence D, Pham V C, Lill J R, Ashkenazi A (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell, 137(4): 721–735
CrossRef Pubmed Google scholar
[51]
Johnson-Pais T L, Wisdom J H, Weldon K S, Cody J D, Hansen M F, Singer F R, Leach R J (2003). Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res, 18(10): 1748–1753
CrossRef Pubmed Google scholar
[52]
Johnson J O, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin V M, Trojanowski J Q, Gibbs J R, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez D G, Arepalli S, Chong S, Schymick J C, Rothstein J, Landi F, Wang Y D, Calvo A, Mora G, Sabatelli M, Monsurrò M R, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, the ITALSGEN Consortium, Galassi G, Scholz S W, Taylor J P, Restagno G, Chiò A, Traynor B J (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5): 857–864
CrossRef Pubmed Google scholar
[53]
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295
CrossRef Pubmed Google scholar
[54]
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21): 5720–5728
CrossRef Pubmed Google scholar
[55]
Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2): 163–175
CrossRef Pubmed Google scholar
[56]
Kim P K, Hailey D W, Mullen R T, Lippincott-Schwartz J (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA, 105(52): 20567–20574
CrossRef Pubmed Google scholar
[57]
Klionsky D J, Abeliovich H, Agostinis P, Agrawal D K, Aliev G, Askew D S, Baba M, Baehrecke E H, Bahr B A, Ballabio A, Bamber B A, Bassham D C, Bergamini E, Bi X, Biard-Piechaczyk M, Blum J S, Bredesen D E, Brodsky J L, Brumell J H, Brunk U T, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin L S, Choi A, Chu C T, Chung J, Clarke P G, Clark R S, Clarke S G, Clavé C, Cleveland J L, Codogno P, Colombo M I, Coto-Montes A, Cregg J M, Cuervo A M, Debnath J, Demarchi F, Dennis P B, Dennis P A, Deretic V, Devenish R J, Di Sano F, Dice J F, Difiglia M, Dinesh-Kumar S, Distelhorst C W, Djavaheri-Mergny M, Dorsey F C, Dröge W, Dron M, Dunn W A Jr, Duszenko M, Eissa N T, Elazar Z, Esclatine A, Eskelinen E L, Fésüs L, Finley K D, Fuentes J M, Fueyo J, Fujisaki K, Galliot B, Gao F B, Gewirtz D A, Gibson S B, Gohla A, Goldberg A L, Gonzalez R, González-Estévez C, Gorski S, Gottlieb R A, Häussinger D, He Y W, Heidenreich K, Hill J A, Høyer-Hansen M, Hu X, Huang W P, Iwasaki A, Jäättelä M, Jackson W T, Jiang X, Jin S, Johansen T, Jung J U, Kadowaki M, Kang C, Kelekar A, Kessel D H, Kiel J A, Kim H P, Kimchi A, Kinsella T J, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács A L, Kroemer G, Kuan C Y, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei H Y, Lenardo M J, Levine B, Lieberman A, Lim K L, Lin F C, Liou W, Liu L F, Lopez-Berestein G, López-Otín C, Lu B, Macleod K F, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer A J, Meléndez A, Michels P, Miotto G, Mistiaen W P, Mizushima N, Mograbi B, Monastyrska I, Moore M N, Moreira P I, Moriyasu Y, Motyl T, Münz C, Murphy L O, Naqvi N I, Neufeld T P, Nishino I, Nixon R A, Noda T, Nürnberg B, Ogawa M, Oleinick N L, Olsen L J, Ozpolat B, Paglin S, Palmer G E, Papassideri I, Parkes M, Perlmutter D H, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein D C, Ryan K M, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen P O, Seleverstov O, Settleman J, Shacka J J, Shapiro I M, Sibirny A, Silva-Zacarin E C, Simon H U, Simone C, Simonsen A, Smith M A, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug P E, Subauste C S, Sugimoto S, Sulzer D, Suzuki T, Swanson M S, Tabas I, Takeshita F, Talbot N J, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor G S, Taylor J P, Terman A, Tettamanti G, Thompson C B, Thumm M, Tolkovsky A M, Tooze S A, Truant R, Tumanovska L V, Uchiyama Y, Ueno T, Uzcátegui N L, van der Klei I, Vaquero E C, Vellai T, Vogel M W, Wang H G, Webster P, Wiley J W, Xi Z, Xiao G, Yahalom J, Yang J M, Yap G, Yin X M, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter R L (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2): 151–175
Pubmed
[58]
Kobayashi A, Kang M I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol, 24(16): 7130–7139
CrossRef Pubmed Google scholar
[59]
Komatsu M, Ichimura Y (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett, 584(7): 1374–1378
CrossRef Pubmed Google scholar
[60]
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
Pubmed
[61]
Komatsu M, Waguri S, Koike M, Sou Y S, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6): 1149–1163
CrossRef Pubmed Google scholar
[62]
Korolchuk V I, Menzies F M, Rubinsztein D C (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett, 584(7): 1393–1398
CrossRef Pubmed Google scholar
[63]
Kuusisto E, Salminen A, Alafuzoff I (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport, 12(10): 2085–2090
CrossRef Pubmed Google scholar
[64]
Kuusisto E, Salminen A, Alafuzoff I (2002). Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol, 28(3): 228–237
CrossRef Pubmed Google scholar
[65]
Kuusisto E, Suuronen T, Salminen A (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun, 280(1): 223–228
CrossRef Pubmed Google scholar
[66]
Lacey D L, Timms E, Tan H L, Kelley M J, Dunstan C R, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W J (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2): 165–176
CrossRef Pubmed Google scholar
[67]
Lallena M J, Diaz-Meco M T, Bren G, Payá C V, Moscat J (1999). Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol, 19(3): 2180–2188
Pubmed
[68]
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem, 278(36): 34568–34581
CrossRef Pubmed Google scholar
[69]
Lamothe B, Webster W K, Gopinathan A, Besse A, Campos A D, Darnay B G (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun, 359(4): 1044–1049
CrossRef Pubmed Google scholar
[70]
Lau A, Wang X J, Zhao F, Villeneuve N F, Wu T, Jiang T, Sun Z, White E, Zhang D D (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol, 30(13): 3275–3285
CrossRef Pubmed Google scholar
[71]
Laurin N, Brown J P, Morissette J, Raymond V (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet, 70(6): 1582–1588
CrossRef Pubmed Google scholar
[72]
Layfield R (2007). The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med, 9(27): 1–13
CrossRef Pubmed Google scholar
[73]
Layfield R, Ciani B, Ralston S H, Hocking L J, Sheppard P W, Searle M S, Cavey J R (2004). Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans, 32(5): 728–730
CrossRef Pubmed Google scholar
[74]
Layfield R, Hocking L J (2004). SQSTM1 and Paget’s disease of bone. Calcif Tissue Int, 75(5): 347–357
CrossRef Pubmed Google scholar
[75]
Lee T H, Shank J, Cusson N, Kelliher M A (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem, 279(32): 33185–33191
CrossRef Pubmed Google scholar
[76]
Lewis T S, Shapiro P S, Ahn N G (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49–139
CrossRef Pubmed Google scholar
[77]
Li H, Kobayashi M, Blonska M, You Y, Lin X (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem, 281(19): 13636–13643
CrossRef Pubmed Google scholar
[78]
Maekawa S, Leigh P N, King A, Jones E, Steele J C, Bodi I, Shaw C E, Hortobagyi T, Al-Sarraj S (2009). TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology, 29(6): 672–683
CrossRef Pubmed Google scholar
[79]
Martin P, Diaz-Meco M T, Moscat J (2006). The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J, 25(15): 3524–3533
CrossRef Pubmed Google scholar
[80]
Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6): 1062–1075
CrossRef Pubmed Google scholar
[81]
Matsuoka T, Fujii N, Kondo A, Iwaki A, Hokonohara T, Honda H, Sasaki K, Suzuki S O, Iwaki T (2011). An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology, 31(1): 71–76
[82]
McMahon M, Itoh K, Yamamoto M, Hayes J D (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem, 278(24): 21592–21600
CrossRef Pubmed Google scholar
[83]
Micheau O, Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 114(2): 181–190
CrossRef Pubmed Google scholar
[84]
Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006). Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci, 249(1): 13–18
CrossRef Pubmed Google scholar
[85]
Moscat J, Diaz-Meco M T (2011). Feedback on fat: p62-mTORC1-autophagy connections. Cell, 147(4): 724–727
CrossRef Pubmed Google scholar
[86]
Moscat J, Diaz-Meco M T, Wooten M W (2007). Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci, 32(2): 95–100
CrossRef Pubmed Google scholar
[87]
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557
CrossRef Pubmed Google scholar
[88]
Nagaoka U, Kim K, Jana N R, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004). Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem, 91(1): 57–68
CrossRef Pubmed Google scholar
[89]
Najat D, Garner T, Hagen T, Shaw B, Sheppard P W, Falchetti A, Marini F, Brandi M L, Long J E, Cavey J R, Searle M S, Layfield R (2009). Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res, 24(4): 632–642
CrossRef Pubmed Google scholar
[90]
Nakano T, Nakaso K, Nakashima K, Ohama E (2004). Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol, 107(4): 359–364
CrossRef Pubmed Google scholar
[91]
Norman J M, Cohen G M, Bampton E T (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 6(8): 1042–1056
CrossRef Pubmed Google scholar
[92]
Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377
CrossRef Pubmed Google scholar
[93]
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
CrossRef Pubmed Google scholar
[94]
Parkhitko A, Myachina F, Morrison T A, Hindi K M, Auricchio N, Karbowniczek M, Wu J J, Finkel T, Kwiatkowski D J, Yu J J, Henske E P (2011). Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA, 108(30): 12455–12460
CrossRef Pubmed Google scholar
[95]
Parkinson N, Ince P G, Smith M O, Highley R, Skibinski G, Andersen P M, Morrison K E, Pall H S, Hardiman O, Collinge J, Shaw P J, Fisher E M, and the MRC Proteomics in ALS Study, and the FReJA Consortium (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology, 67(6): 1074–1077
CrossRef Pubmed Google scholar
[96]
Polak P, Cybulski N, Feige J N, Auwerx J, Rüegg M A, Hall M N (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab, 8(5): 399–410
CrossRef Pubmed Google scholar
[97]
Puls A, Schmidt S, Grawe F, Stabel S (1997). Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA, 94(12): 6191–6196
CrossRef Pubmed Google scholar
[98]
Quinn J M, Elliott J, Gillespie M T, Martin T J (1998). A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 139(10): 4424–4427
CrossRef Pubmed Google scholar
[99]
Rabouille C, Levine T P, Peters J M, Warren G (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell, 82(6): 905–914
CrossRef Pubmed Google scholar
[100]
Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom A L, Kemppainen R, Cox N, Zhu H, Wooten M C, Diaz-Meco M T, Moscat J, Wooten M W (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem, 106(1): 107–120
CrossRef Pubmed Google scholar
[101]
Ravikumar B, Vacher C, Berger Z, Davies J E, Luo S, Oroz L G, Scaravilli F, Easton D F, Duden R, O’Kane C J, Rubinsztein D C (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 36(6): 585–595
CrossRef Pubmed Google scholar
[102]
Rea S L, Walsh J P, Ward L, Magno A L, Ward B K, Shaw B, Layfield R, Kent G N, Xu J, Ratajczak T (2009). Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res, 24(7): 1216–1223
CrossRef Pubmed Google scholar
[103]
Rea S L, Walsh J P, Ward L, Yip K, Ward B K, Kent G N, Steer J H, Xu J, Ratajczak T (2006). A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res, 21(7): 1136–1145
CrossRef Pubmed Google scholar
[104]
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222
CrossRef Pubmed Google scholar
[105]
Rusten T E, Simonsen A (2008). ESCRT functions in autophagy and associated disease. Cell Cycle, 7(9): 1166–1172
CrossRef Pubmed Google scholar
[106]
Sanz L, Diaz-Meco M T, Nakano H, Moscat J (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J, 19(7): 1576–1586
CrossRef Pubmed Google scholar
[107]
Sanz L, Sanchez P, Lallena M J, Diaz-Meco M T, Moscat J (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J, 18(11): 3044–3053
CrossRef Pubmed Google scholar
[108]
Seibenhener M L, Babu J R, Geetha T, Wong H C, Krishna N R, Wooten M W (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol, 24(18): 8055–8068
CrossRef Pubmed Google scholar
[109]
Seibenhener M L, Geetha T, Wooten M W (2007). Sequestosome 1/p62—more than just a scaffold. FEBS Lett, 581(2): 175–179
CrossRef Pubmed Google scholar
[110]
Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, Leguern E, Duyckaerts C (2009). Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol, 118(4): 561–573
CrossRef Pubmed Google scholar
[111]
Shi C S, Kehrl J H (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem, 278(17): 15429–15434
CrossRef Pubmed Google scholar
[112]
Shin J (1998). P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res, 21(6): 629–633
CrossRef Pubmed Google scholar
[113]
Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci, 121(16): 2685–2695
CrossRef Pubmed Google scholar
[114]
Sundaram K, Shanmugarajan S, Rao D S, Reddy S V (2011). Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology, 152(11): 4180–4189
CrossRef Pubmed Google scholar
[115]
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25(8): 795–800
CrossRef Pubmed Google scholar
[116]
Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, Nukina N, Iwaki T, Fukumaki Y, Kira J I (2010). Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol, 119(3): 355–364
CrossRef Pubmed Google scholar
[117]
Teitelbaum S L, Ross F P (2003). Genetic regulation of osteoclast development and function. Nat Rev Genet, 4(8): 638–649
CrossRef Pubmed Google scholar
[118]
Um S H, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini P R, Kozma S C, Auwerx J, Thomas G (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 431(7005): 200–205
CrossRef Pubmed Google scholar
[119]
Vadlamudi R K, Joung I, Strominger J L, Shin J (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem, 271(34): 20235–20237
CrossRef Pubmed Google scholar
[120]
Van Antwerp D J, Martin S J, Verma I M, Green D R (1998). Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol, 8(3): 107–111
CrossRef Pubmed Google scholar
[121]
Varelas P N, Bertorini T E, Kapaki E, Papageorgiou C T (1997). Paget’s disease of bone and motor neuron disease. Muscle Nerve, 20(5): 630
Pubmed
[122]
Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop D R, Harada T, Engel J D, Yamamoto M (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet, 35(3): 238–245
CrossRef Pubmed Google scholar
[123]
Wang C, Deng L, Hong M, Akkaraju G R, Inoue J, Chen Z J (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844): 346–351
CrossRef Pubmed Google scholar
[124]
Watts G D, Wymer J, Kovach M J, Mehta S G, Mumm S, Darvish D, Pestronk A, Whyte M P, Kimonis V E (2004). Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet, 36(4): 377–381
CrossRef Pubmed Google scholar
[125]
Wilson M I, Gill D J, Perisic O, Quinn M T, Williams R L (2003). PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell, 12(1): 39–50
CrossRef Pubmed Google scholar
[126]
Wooten M W, Geetha T, Babu J R, Seibenhener M L, Peng J, Cox N, Diaz-Meco M T, Moscat J (2008). Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem, 283(11): 6783–6789
CrossRef Pubmed Google scholar
[127]
Wooten M W, Geetha T, Seibenhener M L, Babu J R, Diaz-Meco M T, Moscat J (2005). The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem, 280(42): 35625–35629
CrossRef Pubmed Google scholar
[128]
Wooten M W, Seibenhener M L, Mamidipudi V, Diaz-Meco M T, Barker P A, Moscat J (2001). The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J Biol Chem, 276(11): 7709–7712
CrossRef Pubmed Google scholar
[129]
Wu Y, Zhou B P (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer, 102(4): 639–644
CrossRef Pubmed Google scholar
[130]
Xu J, Wu H F, Ang E S, Yip K, Woloszyn M, Zheng M H, Tan R X (2009). NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev, 20(1): 7–17
CrossRef Pubmed Google scholar
[131]
Yang W L, Zhang X, Lin H K (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 29(32): 4493–4503
CrossRef Pubmed Google scholar
[132]
Yue Z (2007). Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy, 3(2): 139–141
Pubmed
[133]
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol, 160(1): 255–263
CrossRef Pubmed Google scholar
[134]
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A, 106(47): 19860–19865
Pubmed
[135]
Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem, 279(44): 45676–45684
CrossRef Pubmed Google scholar

Acknowledgments

This study was in part supported by NIH grant R21-AG032567 to H. Z.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(387 KB)

Accesses

Citations

Detail

Sections
Recommended

/