ROS-mediated regulation of CXCR4 in cancer
Mahandranauth A. CHETRAM, Cimona V. HINTON
ROS-mediated regulation of CXCR4 in cancer
Oxidative stress and the accumulation of reactive oxygen specie (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option. However, studies have shown that ROS increases expression of CXCR4 in cancer and immune cells. CXCR4 expression in tumors strongly correlates to metastasis and poor prognosis. Herein, we discuss an emerging relationship between ROS and CXCR4 in cancer cells.
reactive oxygen species / CXCR4 / HIF1α / metastasis / PI3K/AKT / ERK1/2
[1] |
Ammendola R, Mesuraca M, Russo T, Cimino F (1994). The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem, 225(1): 483-489
CrossRef
Pubmed
Google scholar
|
[2] |
Balabanian K, Lagane B, Infantino S, Chow K Y, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 280(42): 35760-35766
CrossRef
Pubmed
Google scholar
|
[3] |
Busillo J M, Benovic J L (2007). Regulation of CXCR4 signaling. Biochim Biophys Acta, 1768(4): 952-963
CrossRef
Pubmed
Google scholar
|
[4] |
Chetram M A, Odero-Marah V, Hinton C V (2011). Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res, 9(1): 90-102
CrossRef
Pubmed
Google scholar
|
[5] |
Cho Y H, Shen J, Gammon M D, Zhang Y J, Wang Q, Gonzalez K, Xu X, Bradshaw P T, Teitelbaum S L, Garbowski G, Hibshoosh H, Neugut A I, Chen J, Santella R M (2012). Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat, 131(1): 197-205
CrossRef
Pubmed
Google scholar
|
[6] |
Circu M L, Aw T Y (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 48(6): 749-762
CrossRef
Pubmed
Google scholar
|
[7] |
Cook J A, Gius D, Wink D A, Krishna M C, Russo A, Mitchell J B (2004). Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol, 14(3): 259-266
CrossRef
Pubmed
Google scholar
|
[8] |
Cruz-Orengo L, Holman D W, Dorsey D, Zhou L, Zhang P, Wright M, McCandless E E, Patel J R, Luker G D, Littman D R, Russell J H, Klein R S (2011). CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med, 208(2): 327-339
CrossRef
Pubmed
Google scholar
|
[9] |
Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, Kao WM, Battista M, Tesio M, Kollet O (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 25(8):1286-1296
|
[10] |
Davies K J (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans, 21(2): 346-353
Pubmed
|
[11] |
Esposito F, Cuccovillo F, Morra F, Russo T, Cimino F (1995). DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochim Biophys Acta, 1260(3): 308-314
Pubmed
|
[12] |
Fraga C G, Shigenaga M K, Park J W, Degan P, Ames B N (1990). Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA, 87(12): 4533-4537
CrossRef
Pubmed
Google scholar
|
[13] |
Galaris D, Skiada V, Barbouti A (2008). Redox signaling and cancer: the role of “labile” iron. Cancer Lett, 266(1): 21-29
CrossRef
Pubmed
Google scholar
|
[14] |
Gerard C, Rollins B J (2001). Chemokines and disease. Nat Immunol, 2(2): 108-115
CrossRef
Pubmed
Google scholar
|
[15] |
Gupta A, Rosenberger S F, Bowden G T (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20(11): 2063-2073
CrossRef
Pubmed
Google scholar
|
[16] |
Gupta S K, Lysko P G, Pillarisetti K, Ohlstein E, Stadel J M (1998). Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 273(7): 4282-4287
CrossRef
Pubmed
Google scholar
|
[17] |
Guyton K Z, Liu Y, Gorospe M, Xu Q, Holbrook N J (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem, 271(8): 4138-4142
Pubmed
|
[18] |
Ha H L, Yu D Y (2010). HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J Gastroenterol, 16(39): 4932-4937
CrossRef
Pubmed
Google scholar
|
[19] |
Hambali Z, Ahmad Z, Arab S, Khazaai H (2011). Oxidative stress and its association with cardiovascular disease in chronic renal failure patients. Indian J Nephrol, 21(1): 21-25
CrossRef
Pubmed
Google scholar
|
[20] |
Hinton C V, Avraham S, Avraham H K (2010). Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis, 27(2): 97-105
CrossRef
Pubmed
Google scholar
|
[21] |
Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf D J, Zhang J, Ratajczak J, Ratajczak M Z (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 35(3): 233-245
CrossRef
Pubmed
Google scholar
|
[22] |
Kumar B, Koul S, Khandrika L, Meacham R B, Koul H K (2008). Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res, 68(6): 1777-1785
CrossRef
Pubmed
Google scholar
|
[23] |
Landriscina M, Maddalena F, Laudiero G, Esposito F (2009). Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal, 11(11): 2701-2716
CrossRef
Pubmed
Google scholar
|
[24] |
Lau E K, Allen S, Hsu A R, Handel T M (2004). Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem, 68: 351-391
CrossRef
Pubmed
Google scholar
|
[25] |
Lee R L, Westendorf J, Gold M R (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal, 1(1): 33-43
CrossRef
Pubmed
Google scholar
|
[26] |
Lee S R, Yang K S, Kwon J, Lee C, Jeong W, Rhee S G (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem, 277(23): 20336-20342
CrossRef
Pubmed
Google scholar
|
[27] |
Li S, Deng Y, Feng J, Ye W (2009). Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int, 33(3): 411-418
CrossRef
Pubmed
Google scholar
|
[28] |
Lin W, Wu G, Li S, Weinberg E M, Kumthip K, Peng L F, Méndez-Navarro J, Chen W C, Jilg N, Zhao H, Goto K, Zhang L, Brockman M A, Schuppan D, Chung R T (2011). HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB. J Biol Chem, 286(4): 2665-2674
CrossRef
Pubmed
Google scholar
|
[29] |
Lindahl T (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422): 709-715
CrossRef
Pubmed
Google scholar
|
[30] |
Liou G Y, Storz P (2010). Reactive oxygen species in cancer. Free Radic Res, 44(5): 479-496
CrossRef
Pubmed
Google scholar
|
[31] |
Liu L Z, Hu X W, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang B H (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med, 41(10): 1521-1533
CrossRef
Pubmed
Google scholar
|
[32] |
Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B (2011). Mast cell: insight into remodeling a tumor microenvironment. Cancer Metastasis Rev, 30(2):177-184
|
[33] |
Loetscher P, Moser B, Baggiolini M (2000). Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol, 74: 127-180
CrossRef
Pubmed
Google scholar
|
[34] |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan M E, McClanahan T, Murphy E, Yuan W, Wagner S N, Barrera J L, Mohar A, Verástegui E, Zlotnik A (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824): 50-56
CrossRef
Pubmed
Google scholar
|
[35] |
Nelson W G, De Marzo A M, DeWeese T L, Isaacs W B (2004). The role of inflammation in the pathogenesis of prostate cancer. J Urol, 172(5): 6-12
|
[36] |
Ozben T (2007). Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci, 96(9): 2181-2196
CrossRef
Pubmed
Google scholar
|
[37] |
Pan J S, Hong M Z, Ren J L (2009). Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol, 15(14): 1702-1707
CrossRef
Pubmed
Google scholar
|
[38] |
Pani G, Galeotti T, Chiarugi P (2010). Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev, 29(2): 351-378
CrossRef
Pubmed
Google scholar
|
[39] |
Rains J L, Jain S K (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med, 50(5): 567-575
CrossRef
Pubmed
Google scholar
|
[40] |
Saini V, Staren D M, Ziarek J J, Nashaat Z N, Campbell E M, Volkman B F, Marchese A, Majetschak M (2011). The CXC chemokine receptor 4 ligands ubiquitin and stromal-cell derived factor-1{alpha} function through distinct receptor interactions. J Biol Chem, 286(38): 33466-33477
|
[41] |
Salmeen A, Andersen J N, Myers M P, Meng T C, Hinks J A, Tonks N K, Barford D (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 423(6941): 769-773
CrossRef
Pubmed
Google scholar
|
[42] |
Simon H U, Haj-Yehia A, Levi-Schaffer F (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5): 415-418
CrossRef
Pubmed
Google scholar
|
[43] |
Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley E J, Krek W (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425(6955): 307-311
CrossRef
Pubmed
Google scholar
|
[44] |
Storz P (2005). Reactive oxygen species in tumor progression. Front Biosci, 10(1-3): 1881-1896
CrossRef
Pubmed
Google scholar
|
[45] |
Taichman R S, Cooper C, Keller E T, Pienta K J, Taichman N S, McCauley L K (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 62(6): 1832-1837
Pubmed
|
[46] |
Talks K L, Turley H, Gatter K C, Maxwell P H, Pugh C W, Ratcliffe P J, Harris A L (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 157(2): 411-421
CrossRef
Pubmed
Google scholar
|
[47] |
Tanabe S, Heesen M, Yoshizawa I, Berman M A, Luo Y, Bleul C C, Springer T A, Okuda K, Gerard N, Dorf M E (1997). Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol, 159(2): 905-911
Pubmed
|
[48] |
Tchou J C, Lin X, Freije D, Isaacs W B, Brooks J D, Rashid A, De Marzo A M, Kanai Y, Hirohashi S, Nelson W G (2000). GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int J Oncol, 16(4): 663-676
Pubmed
|
[49] |
Tomic J, Lichty B, Spaner D E (2011). Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood, 117(9): 2668-2680
CrossRef
Pubmed
Google scholar
|
[50] |
Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(2): 335-344
CrossRef
Pubmed
Google scholar
|
[51] |
Wagner B A, Buettner G R, Burns C P (1994). Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry, 33(15): 4449-4453
CrossRef
Pubmed
Google scholar
|
[52] |
Wang G L, Jiang B H, Rue E A, Semenza G L (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 92(12): 5510-5514
CrossRef
Pubmed
Google scholar
|
[53] |
Wang J, Wang J, Dai J, Jung Y, Wei C L, Wang Y, Havens A M, Hogg P J, Keller E T, Pienta K J, Nor J E, Wang C Y, Taichman R S (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res, 67(1): 149-159
CrossRef
Pubmed
Google scholar
|
[54] |
Wu W S, Tsai R K, Chang C H, Wang S, Wu J R, Chang Y X (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res, 4(10): 747-758
CrossRef
Pubmed
Google scholar
|
[55] |
Zhong H, Semenza G L, Simons J W, De Marzo A M (2004). Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev, 28(2): 88-93
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |