Wntless in Wnt secretion: molecular, cellular and genetic aspects

Soumyashree DAS, Shiyan YU, Ryotaro SAKAMORI, Ewa Stypulkowski, Nan GAO

PDF(234 KB)
PDF(234 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (6) : 587-593. DOI: 10.1007/s11515-012-1200-8
REVIEW
REVIEW

Wntless in Wnt secretion: molecular, cellular and genetic aspects

Author information +
History +

Abstract

Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.

Keywords

Wntless, Gpr177, Wnt / trafficking, secretion, exocytosis, retromer

Cite this article

Download citation ▾
Soumyashree DAS, Shiyan YU, Ryotaro SAKAMORI, Ewa Stypulkowski, Nan GAO. Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front Biol, 2012, 7(6): 587‒593 https://doi.org/10.1007/s11515-012-1200-8

References

[1]
Attar N, Cullen P J (2010). The retromer complex. Adv Enzyme Regul, 50(1): 216–236
CrossRef Pubmed Google scholar
[2]
Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3): 509–522
CrossRef Pubmed Google scholar
[3]
Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3): 523–533
CrossRef Pubmed Google scholar
[4]
Belenkaya T Y, Wu Y, Tang X, Zhou B, Cheng L, Sharma Y V, Yan D, Selva E M, Lin X (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell, 14(1): 120–131
CrossRef Pubmed Google scholar
[5]
Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch D H, McMahon A P, Sommer L, Boussadia O, Kemler R (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 128(8): 1253–1264
Pubmed
[6]
Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol, 14(20): 1791–1800
CrossRef Pubmed Google scholar
[7]
Carlton J G, Bujny M V, Peter B J, Oorschot V M, Rutherford A, Arkell R S, Klumperman J, McMahon H T, Cullen P J (2005). Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci, 118(19): 4527–4539
CrossRef Pubmed Google scholar
[8]
Carpenter A C, Rao S, Wells J M, Campbell K, Lang R A (2010). Generation of mice with a conditional null allele for Wntless. Genesis, 48(9): 554–558
CrossRef Pubmed Google scholar
[9]
Ching W, Hang H C, Nusse R (2008). Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem, 283(25): 17092–17098
CrossRef Pubmed Google scholar
[10]
Clevers H (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3): 469–480
CrossRef Pubmed Google scholar
[11]
Coombs G S, Yu J, Canning C A, Veltri C A, Covey T M, Cheong J K, Utomo V, Banerjee N, Zhang Z H, Jadulco R C, Concepcion G P, Bugni T S, Harper M K, Mihalek I, Jones C M, Ireland C M, Virshup D M (2010). WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci, 123(19): 3357–3367
CrossRef Pubmed Google scholar
[12]
Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice M M, Vincent J P (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol, 10(2): 170–177
CrossRef Pubmed Google scholar
[13]
Fu J, Ivy Yu H M, Maruyama T, Mirando A J, Hsu W (2011). Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn, 240(2): 365–371
CrossRef Pubmed Google scholar
[14]
Fu J, Jiang M, Mirando A J, Yu H M, Hsu W (2009). Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA, 106(44): 18598–18603
CrossRef Pubmed Google scholar
[15]
Galli L M, Barnes T L, Secrest S S, Kadowaki T, Burrus L W (2007). Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development, 134(18): 3339–3348
CrossRef Pubmed Google scholar
[16]
Gasnereau I, Herr P, Chia P Z, Basler K, Gleeson PA (2011). Identification of an endocytosis motif in an intracellular loop of Wntless, essential for its recycling and the control of Wnt signalling. J Biol Chem, 286: 43324–43333
[17]
Goodman R M, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana E P, Selva E M (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24): 4901–4911
CrossRef Pubmed Google scholar
[18]
Harterink M, Port F, Lorenowicz M J, McGough I J, Silhankova M, Betist M C, van Weering J R, van Heesbeen R G, Middelkoop T C, Basler K, Cullen P J, Korswagen H C (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol, 13(8): 914–923
CrossRef Pubmed Google scholar
[19]
Herr P, Basler K (2011). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol, 361(2): 392–402
[20]
Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S (1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 389(6654): 966–970
CrossRef Pubmed Google scholar
[21]
Jin J, Kittanakom S, Wong V, Reyes B A, Van Bockstaele E J, Stagljar I, Berrettini W, Levenson R (2010). Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci, 11(1): 33
CrossRef Pubmed Google scholar
[22]
Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells, 12(4): 521–534
CrossRef Pubmed Google scholar
[23]
Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2): 393–404
CrossRef Pubmed Google scholar
[24]
Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J, 402(3): 515–523
CrossRef Pubmed Google scholar
[25]
Liu P, Wakamiya M, Shea M J, Albrecht U, Behringer R R, Bradley A (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4): 361–365
CrossRef Pubmed Google scholar
[26]
Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20(1): 781–810
CrossRef Pubmed Google scholar
[27]
MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1): 9–26
CrossRef Pubmed Google scholar
[28]
McMahon A P, Bradley A (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6): 1073–1085
CrossRef Pubmed Google scholar
[29]
Pan C L, Baum P D, Gu M, Jorgensen E M, Clark S G, Garriga G (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell, 14(1): 132–139
CrossRef Pubmed Google scholar
[30]
Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol, 10(2): 178–185
CrossRef Pubmed Google scholar
[31]
Rojas R, van Vlijmen T, Mardones G A, Prabhu Y, Rojas A L, Mohammed S, Heck A J, Raposo G, van der Sluijs P, Bonifacino J S (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol, 183(3): 513–526
CrossRef Pubmed Google scholar
[32]
Seaman M N (2005). Recycle your receptors with retromer. Trends Cell Biol, 15(2): 68–75
CrossRef Pubmed Google scholar
[33]
Silhankova M, Port F, Harterink M, Basler K, Korswagen H C (2010). Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J, 29(24): 4094–4105
CrossRef Pubmed Google scholar
[34]
Stefater J A 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter A C, Burr A R, Fan J, Ajima R, Molkentin J D, Williams B O, Wills-Karp M, Pollard J W, Yamaguchi T, Ferrara N, Gerhardt H, Lang R A (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature, 474(7352): 511–515
CrossRef Pubmed Google scholar
[35]
Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell, 11(6): 791–801
CrossRef Pubmed Google scholar
[36]
Tanaka K, Kitagawa Y, Kadowaki T (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem, 277(15): 12816–12823
CrossRef Pubmed Google scholar
[37]
Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000). The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem, 267(13): 4300–4311
CrossRef Pubmed Google scholar
[38]
Tang X, Fan X, Lin X (2011). Regulation of Wnt Secretion and Distribution. Springer Science+Business Media, LLC 2011, 19–33
[39]
Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan N J, von Zastrow M (2011). SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol, 13(6): 717–721
CrossRef Pubmed Google scholar
[40]
Thomas K R, Capecchi M R (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346(6287): 847–850
CrossRef Pubmed Google scholar
[41]
van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993). Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J, 12(13): 5293–5302
Pubmed
[42]
Wassmer T, Attar N, Bujny M V, Oakley J, Traer C J, Cullen P J (2007). A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci, 120(1): 45–54
CrossRef Pubmed Google scholar
[43]
Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452
CrossRef Pubmed Google scholar
[44]
Yang P T, Lorenowicz M J, Silhankova M, Coudreuse D Y, Betist M C, Korswagen H C (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell, 14(1): 140–147
CrossRef Pubmed Google scholar
[45]
Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 279(32): 33220– 33227
CrossRef Pubmed Google scholar
[46]
Zhang P, Wu Y, Belenkaya T Y, and Lin X (2011). SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res, 21(12):1677–1690

Acknowledgments

This work is supported by NIH/NIDDK (5K01DK085194); Charles and Johanna Busch Memorial Award 659160; Rutgers University Faculty Research Grant and a Biologic Sciences Departmental Fund to N.G. We sincerely apologize to researchers for any unintentional omissions of their works in this review.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/