The stomata frontline of plant interaction with the environment-perspectives from hormone regulation

Mengmeng ZHU, Shaojun DAI, Sixue CHEN

PDF(501 KB)
PDF(501 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (2) : 96-112. DOI: 10.1007/s11515-012-1193-3
REVIEW
REVIEW

The stomata frontline of plant interaction with the environment-perspectives from hormone regulation

Author information +
History +

Abstract

Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions. On leaf surface, stomata formed by pairs of guard cells mediate gas exchange, water transpiration as well as function in response to abiotic and biotic stresses. Stomatal closure could be induced by drought, salt, pathogen and other adverse conditions. This constitutes an instant defense response to prevent further damage to plants. Abscisic acid (ABA) is a major plant hormone involved in stress responses. Stress-activated ABA synthesis causes stomatal closure and prevents opening to reduce water loss and cell dehydration. Key regulatory receptor complex and other important components in the ABA signaling pathway have been identified. However, our knowledge of ABA signal transduction in guard cells is far from complete. Jasmonates are a group of phytohormones generally known to be important for plant defense against insects and necrotrophic pathogens. The increased levels of methyl jasmonate (MeJA) induced by herbivory and pathogen invasion show a similar effect on stomatal movement associated with ROS production as ABA. Investigation of guard cell signaling networks involving the two important phytohormones is significant and exciting. Information about protein and metabolite components and how they interact in guard cells is lacking. Here we review recent advances on hormone signaling networks in guard cells and how the networks integrate environmental signals to plant physiological output.

Keywords

stomata / guard cells / hormone / signaling / molecular networks

Cite this article

Download citation ▾
Mengmeng ZHU, Shaojun DAI, Sixue CHEN. The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Front Biol, 2012, 7(2): 96‒112 https://doi.org/10.1007/s11515-012-1193-3

References

[1]
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15(1): 63-78
CrossRef Pubmed Google scholar
[2]
Acharya B R, Assmann S M (2009). Hormone interactions in stomatal function. Plant Mol Biol, 69(4): 451-462
CrossRef Pubmed Google scholar
[3]
Adachi T, Pimentel D R, Heibeck T, Hou X, Lee Y J, Jiang B, Ido Y, Cohen R A (2004). S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem, 279(28): 29857-29862
CrossRef Pubmed Google scholar
[4]
Allen G J, Chu S P, Schumacher K, Shimazaki C T, Vafeados D, Kemper A, Hawke S D, Tallman G, Tsien R Y, Harper J F, Chory J, Schroeder J I (2000). Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsisdet3 mutant. Science, 289(5488): 2338-2342
CrossRef Pubmed Google scholar
[5]
Allen G J, Sanders D (1995). Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell, 7(9): 1473-1483
CrossRef Pubmed Google scholar
[6]
Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt M R (1995). Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA, 92(21): 9520-9524
CrossRef Pubmed Google scholar
[7]
Assmann S M (1993). Signal transduction in guard cells. Annu Rev Cell Biol, 9(1): 345-375
CrossRef Pubmed Google scholar
[8]
Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci, 8(4): 151-153
CrossRef Pubmed Google scholar
[9]
Bandurska H, Stroinski A, Kubis J (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant, 25(3): 279-285
CrossRef Google scholar
[10]
Barford D (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci, 21(11): 407-412
CrossRef Pubmed Google scholar
[11]
Barth C, Jander G (2006). Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J, 46(4): 549-562
CrossRef Pubmed Google scholar
[12]
Bäumer N, Mäurer A, Krieglstein J, Klumpp S (2007). Expression of protein histidine phosphatase in Escherichia coli, purification, and determination of enzyme activity. Methods Mol Biol, 365: 247-260
Pubmed
[13]
Beligni M V, Lamattina L (2001). Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci, 6(11): 508-509
CrossRef Pubmed Google scholar
[14]
Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan T M, Mueller M J, Xia Z Q, Zenk M H (1995). The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA, 92(10): 4099-4105
CrossRef Pubmed Google scholar
[15]
Bright J, Desikan R, Hancock J T, Weir I S, Neill S J (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 45(1): 113-122
CrossRef Pubmed Google scholar
[16]
Buchanan B B, Balmer Y (2005). Redox regulation: a broadening horizon. Annu Rev Plant Biol, 56(1): 187-220
CrossRef Pubmed Google scholar
[17]
Burnett G, Kennedy E P (1954). The enzymatic phosphorylation of proteins. J Biol Chem, 211(2): 969-980
Pubmed
[18]
Camps M, Nichols A, Arkinstall S (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J, 14(1): 6-16
Pubmed
[19]
Chen J G (2008). Heterotrimeric G-protein signaling in Arabidopsis: Puzzling G-protein-coupled receptor. Plant Signal Behav, 3(12): 1042-1045
CrossRef Pubmed Google scholar
[20]
Chen S, Harmon A C (2006). Advances in plant proteomics. Proteomics, 6(20): 5504-5516
CrossRef Pubmed Google scholar
[21]
Chen Z, Gallie D R (2004). The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell, 16(5): 1143-1162
CrossRef Pubmed Google scholar
[22]
Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15(8): 1833-1845
CrossRef Pubmed Google scholar
[23]
Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 52: 223-239
[24]
Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud J B (2002). Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell, 14(5): 1133-1146
CrossRef Pubmed Google scholar
[25]
Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 139(4): 1750-1761
CrossRef Pubmed Google scholar
[26]
Cohen P, Cottrell G, Hill Venning C (1989). The protein phosphatase inhibitor okadaic acid potentiates the 5-HT induced suppression of a K current in the C1-neurone of helix-aspersa. J Physiol, 415: 33
[27]
Colcombet J, Lelièvre F, Thomine S, Barbier-Brygoo H, Frachisse J M (2005). Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot, 56(417): 1897-1903
CrossRef Pubmed Google scholar
[28]
Cramer M D, Nagel O W, Lips S H, Lambers H (1995). Reduction, assimilation and transport of N in normal and gibberellin deficient tomato plants. Physiol Plant, 95(3): 347-354
CrossRef Google scholar
[29]
Creelman R A, Mullet J E (1997). Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol, 48(1): 355-381
CrossRef Pubmed Google scholar
[30]
Dat J F, Capelli N, Folzer H, Bourgeade P, Badot P M (2004). Sensing and signalling during plant flooding. Plant Physiol Biochem, 42(4): 273-282
CrossRef Pubmed Google scholar
[31]
Delk N A, Johnson K A, Chowdhury N I, Braam J (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol, 139(1): 240-253
CrossRef Pubmed Google scholar
[32]
Desikan R, Griffiths R, Hancock J, Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA, 99(25): 16314-16318
CrossRef Pubmed Google scholar
[33]
Desikan R, Hancock J T, Bright J, Harrison J, Weir I, Hooley R, Neill S J (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol, 137(3): 831-834
CrossRef Pubmed Google scholar
[34]
Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung M K, Meixner A J, Hooley R, Neill S J, Hancock J T, Harter K (2008). The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE, 3(6): e2491
CrossRef Pubmed Google scholar
[35]
Dodd I C, Davies W J (2010). Hormones and the regulation of water balance. Plant Hormones. E3: 519-548
[36]
Evans N H (2003). Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol, 131(1): 8-11
CrossRef Pubmed Google scholar
[37]
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci, 12(4): 169-176
CrossRef Pubmed Google scholar
[38]
Finkelstein R R, Gibson S I (2002). ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol, 5(1): 26-32
CrossRef Pubmed Google scholar
[39]
Foyer C H, Noctor G (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 11(4): 861-905
CrossRef Pubmed Google scholar
[40]
Fujii H, Verslues P E, Zhu J K (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 19(2): 485-494
CrossRef Pubmed Google scholar
[41]
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 9(4): 436-442
CrossRef Pubmed Google scholar
[42]
Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA, 100(19): 11116-11121
CrossRef Pubmed Google scholar
[43]
Gehring C, Irving H, McConchie R, Parish R (1997). Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann Bot (Lond), 80(4): 485-489
CrossRef Google scholar
[44]
Geiger D, Maierhofer T, Al-Rasheid K A, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal, 4(173): ra32
CrossRef Pubmed Google scholar
[45]
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid K A, Romeis T, Hedrich R (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 106(50): 21425-21430
CrossRef Pubmed Google scholar
[46]
Germain H, Lachance D, Pelletier G, Fossdal C G, Solheim H, Séguin A (2011). The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. J Exp Bot,
CrossRef Pubmed Google scholar
[47]
Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol, 46(12): 1902-1914
CrossRef Pubmed Google scholar
[48]
Gosti F, Beaudoin N, Serizet C, Webb A A, Vartanian N, Giraudat J (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 11(10): 1897-1910
Pubmed
[49]
Gudesblat G E, Iusem N D, Morris P C (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol, 173(4): 713-721
CrossRef Pubmed Google scholar
[50]
Guo J, Zeng Q, Emami M, Ellis B E, Chen J G (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE, 3(8): e2982
CrossRef Pubmed Google scholar
[51]
Halford N G, Hey S J (2009). Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Biochem J, 419(2): 247-259
CrossRef Pubmed Google scholar
[52]
Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 11(4): 192-198
CrossRef Pubmed Google scholar
[53]
Hanks S K, Hunter T (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 9(8): 576-596
Pubmed
[54]
Harmon A C (2003). Calcium-regulated protein kinases of plants. Gravit Space Biol Bull, 16(2): 83-90
Pubmed
[55]
Haubrick L L, Assmann S M (2006). Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ, 29(3): 446-457
CrossRef Pubmed Google scholar
[56]
Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1997). Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ, 20(1): 136-141
CrossRef Google scholar
[57]
Hetherington A M, Woodward F I (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951): 901-908
CrossRef Pubmed Google scholar
[58]
Hey S, Bacon A, Burnett E, Neill S (1997). Abscisic acid signal transduction in epidermal cells of Pisum sativum L. argenteum: Both dehydrin mRNA accumulation and stomatal responses require protein phosphorylation and dephosphorylation. Planta, 202(1): 85-92
CrossRef Google scholar
[59]
Hornberg C, Weiler E (1984). High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature, 310(5975): 321-324
CrossRef Google scholar
[60]
Huang D, Wu W, Abrams S R, Cutler A J (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot, 59(11): 2991-3007
CrossRef Pubmed Google scholar
[61]
Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I (2010). Early abscisic acid signal transduction mechanisms: Newly discovered components and newly emerging questions. Genes Dev, 24(16): 1695-1708
CrossRef Pubmed Google scholar
[62]
Husebye H, Chadchawan S, Winge P, Thangstad O P, Bones A M (2002). Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol, 128(4): 1180-1188
CrossRef Pubmed Google scholar
[63]
Irving A J, Collingridge G L, Schofield J G (1992). L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium, 13(5): 293-301
CrossRef Pubmed Google scholar
[64]
Islam M M, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan M S, Masuda C, Nakamura Y, Mori I C, Murata Y (2009). Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol, 50(6): 1171-1175
CrossRef Pubmed Google scholar
[65]
Iyer L M, Koonin E V, Aravind L (2001). Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins, 43(2): 134-144
CrossRef Pubmed Google scholar
[66]
Jackson M B (2002). Long-distance signaling from roots to shoots assessed: the flooding story. J Exp Bot, 53(367): 175-181
CrossRef Pubmed Google scholar
[67]
Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis B E, Murata Y, Kwak J M (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 106(48): 20520-20525
CrossRef Pubmed Google scholar
[68]
Johnston C A, Temple B R, Chen J G, Gao Y, Moriyama E N, Jones A M, Siderovski D P, Willard F S (2007). Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science, 318(5852): 914c
CrossRef Pubmed Google scholar
[69]
Joo J H, Wang S, Chen J G, Jones A M, Fedoroff N V (2005). Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell, 17(3): 957-970
CrossRef Pubmed Google scholar
[70]
Katsir L, Chung H S, Koo A J, Howe G A (2008). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol, 11(4): 428-435
CrossRef Pubmed Google scholar
[71]
Kerk D, Bulgrien J, Smith D W, Barsam B, Veretnik S, Gribskov M (2002). The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol, 129(2): 908-925
CrossRef Pubmed Google scholar
[72]
Khokon A R, Okuma E, Hossain M A, Munemasa S, Uraji M, Nakamura Y, Mori I C, Murata Y (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ, 34(3): 434-443
CrossRef Pubmed Google scholar
[73]
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009). The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol, 150(3): 1394-1410
CrossRef Pubmed Google scholar
[74]
Koornneef M, Hanhart C J, Hilhorst H W, Karssen C M (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol, 90(2): 463-469
CrossRef Pubmed Google scholar
[75]
Kwak J M, Moon J H, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder J I (2002). Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell, 14(11): 2849-2861
CrossRef Pubmed Google scholar
[76]
Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D, Schroeder J I (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 22(11): 2623-2633
CrossRef Pubmed Google scholar
[77]
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez A C, Moses T, Seo M, Kanno Y, Häkkinen S T, Van Montagu M C, Thevelein J M, Maaheimo H, Oksman-Caldentey K M, Rodriguez P L, Rischer H, Goossens A (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA, 108(14): 5891-5896
CrossRef Pubmed Google scholar
[78]
Lee J S (1998). The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol, 41(2): 97-102
CrossRef Google scholar
[79]
Lee S C, Lan W, Buchanan B B, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA, 106(50): 21419-21424
CrossRef Pubmed Google scholar
[80]
Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3): 596-615
CrossRef Pubmed Google scholar
[81]
Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264(5164): 1448-1452
CrossRef Pubmed Google scholar
[82]
Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 49(1): 199-222
CrossRef Pubmed Google scholar
[83]
Leung J, Merlot S, Giraudat J (1997). The ArabidopsisABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5): 759-771
Pubmed
[84]
Li J, Assmann S M (1996). An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell, 8(12): 2359-2368
CrossRef Pubmed Google scholar
[85]
Li J, Wang X Q, Watson M B, Assmann S M (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 287(5451): 300-303
CrossRef Pubmed Google scholar
[86]
Li S, Assmann S M, Albert R (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol, 4(10): e312
CrossRef Pubmed Google scholar
[87]
Li W, Luan S, Schreiber S, Assmann S (1994). Evidence for protein phosphates 1 and phosphatase 2A regulation of K+ channels in 2 types of leaf cells. Plant Physiol, 106: 963-970
CrossRef Pubmed Google scholar
[88]
Liechti R, Farmer E E (2002). The jasmonate pathway. Science, 296(5573): 1649-1650
CrossRef Pubmed Google scholar
[89]
Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009). Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot, 60(11): 3221-3238
CrossRef Pubmed Google scholar
[90]
Liu X, Yue Y, Li B, Nie Y, Li W, Wu W H, Ma L (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 315(5819): 1712-1716
CrossRef Pubmed Google scholar
[91]
Lohse G, Hedrich R (1992). Characterization of the plasma membrane H+-ATPase from Vicia faba guard cells- modulation by extracellular factors and seasonal changes. Planta, 188(2): 206-214
CrossRef Google scholar
[92]
Lorenzo O, Chico J M, Sánchez-Serrano J J, Solano R (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell, 16(7): 1938-1950
CrossRef Pubmed Google scholar
[93]
Luan S (2003). Protein phosphatases in plants. Annu Rev Plant Biol, 54(1): 63-92
CrossRef Pubmed Google scholar
[94]
Luan S, Li W, Rusnak F, Assmann S M, Schreiber S L (1993). Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci U S A, 15; 90(6):2202-2206
[95]
Ma S Y, Wu W H (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol, 65(4): 511-518
CrossRef Pubmed Google scholar
[96]
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324(5930): 1064-1068
Pubmed
[97]
MacRobbie E A (1998). Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci, 353(1374): 1475-1488
CrossRef Pubmed Google scholar
[98]
MacRobbie E A (2002). Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci USA, 99(18): 11963-11968
CrossRef Pubmed Google scholar
[99]
Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J P, Aldon D (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J, 56(4): 575-589
CrossRef Pubmed Google scholar
[100]
Manthe B, Schulz M, Schnabl H (1992). Effects of salicylic acid on growth and stomatal movements of Vicia faba L.evidence for salicylic acid metabolization. J Chem Ecol, 18(9): 1525-1539
CrossRef Google scholar
[101]
Meinhard M, Grill E (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett, 508(3): 443-446
CrossRef Pubmed Google scholar
[102]
Meinhard M, Rodriguez P L, Grill E (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta, 214(5): 775-782
CrossRef Pubmed Google scholar
[103]
Melcher K, Ng L M, Zhou X E, Soon F F, Xu Y, Suino-Powell K M, Park S Y, Weiner J J, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson F C, Jensen D R, Yong E L, Volkman B F, Cutler S R, Zhu J K, Xu H E (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273): 602-608
CrossRef Pubmed Google scholar
[104]
Melotto M, Underwood W, Koczan J, Nomura K, He S Y (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126(5): 969-980
CrossRef Pubmed Google scholar
[105]
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 25(3): 295-303
CrossRef Pubmed Google scholar
[106]
Merlot S, Mustilli A C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002). Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J, 30(5): 601-609
CrossRef Pubmed Google scholar
[107]
Meyer K, Leube M P, Grill E (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264(5164): 1452-1455
CrossRef Pubmed Google scholar
[108]
Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K S, Yamaguchi-Shinozaki K, Tanokura M (2009). Structural basis of abscisic acid signalling. Nature, 462(7273): 609-614
CrossRef Pubmed Google scholar
[109]
Mori I C, Murata Y, Yang Y, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J M, Harper J F, Ecker J R, Kwak J M, Schroeder J I (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca (2+)-permeable channels and stomatal closure. PLoS Biol, 4(10): e327
CrossRef Pubmed Google scholar
[110]
Mori I C, Muto S (1997). Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol, 113(3): 833-839
Pubmed
[111]
Mori I C, Pinontoan R, Kawano T, Muto S (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol, 42(12): 1383-1388
CrossRef Pubmed Google scholar
[112]
Mundy J, Schneitz K (2002). Protein phosphorylation in and around signal transduction. Trends Plant Sci, 7(2): 54-55
CrossRef Pubmed Google scholar
[113]
Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: Specific impairment of ion channel activation and second messenger production. Plant Physiol, 143(3): 1398-1407
CrossRef Pubmed Google scholar
[114]
Murata Y, Pei Z M, Mori I C, Schroeder J (2001). Abscisic acid activation of plasma membrane Ca (2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 13(11): 2513-2523
Pubmed
[115]
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12): 3089-3099
CrossRef Pubmed Google scholar
[116]
Neill S J, Desikan R, Clarke A, Hancock J T (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol, 128(1): 13-16
CrossRef Pubmed Google scholar
[117]
Nemhauser J L, Hong F, Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126(3): 467-475
CrossRef Pubmed Google scholar
[118]
Nishimura N, Sarkeshik A, Nito K, Park S Y, Wang A, Carvalho P C, Lee S, Caddell D F, Cutler S R, Chory J, Yates J R, Schroeder J I (2010). PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J, 61(2): 290-299
CrossRef Pubmed Google scholar
[119]
Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J, 50(6): 935-949
CrossRef Pubmed Google scholar
[120]
Outlaw W H Jr, De Vlieghere-He X (2001). Transpiration rate: An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 126(4): 1716-1724
CrossRef Pubmed Google scholar
[121]
Pandey G K, Grant J J, Cheong Y H, Kim B G, Li G, Luan S (2008). Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 1(2): 238-248
CrossRef Pubmed Google scholar
[122]
Pandey S, Nelson D C, Assmann S M (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell, 136(1): 136-148
CrossRef Pubmed Google scholar
[123]
Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324(5930): 1068-1071
Pubmed
[124]
Parvathi K, Raghavendra A (1997). Both Rubisco and phosphoenolpyruvate carboxylase are beneficial for stomatal function in epidermal strips of Commelina benghalensis. Plant Sci, 124(2): 153-157
CrossRef Google scholar
[125]
Pei Z M, Kuchitsu K, Ward J M, Schwarz M, Schroeder J I (1997). Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell, 9(3): 409-423
Pubmed
[126]
Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797): 731-734
CrossRef Pubmed Google scholar
[127]
Pitzschke A, Forzani C, Hirt H (2006). Reactive oxygen species signaling in plants. Antioxid Redox Signal, 8(9-10): 1757-1764
CrossRef Pubmed Google scholar
[128]
Razem F A, El-Kereamy A, Abrams S R, Hill R D (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature, 439(7074): 290-294
CrossRef Pubmed Google scholar
[129]
Rodriguez P L, Leube M P, Grill E (1998). Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol, 38(5): 879-883
CrossRef Pubmed Google scholar
[130]
Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia M P, Nicolas C, Lorenzo O, Rodriguez P L (2004). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J, 37(3): 354-369
CrossRef Pubmed Google scholar
[131]
Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y (2008). Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol, 49(9): 1396-1401
CrossRef Pubmed Google scholar
[132]
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S Y, Márquez J A, Cutler S R, Rodriguez P L (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J, 60(4): 575-588
CrossRef Pubmed Google scholar
[133]
Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto D B, Uozumi N (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 424(3): 439-448
CrossRef Pubmed Google scholar
[134]
Schmidt C, Schelle I, Liao Y J, Schroeder J I (1995). Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA, 92(21): 9535-9539
CrossRef Pubmed Google scholar
[135]
Schroeder J I, Hedrich R (1989). Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci, 14(5): 187-192
CrossRef Pubmed Google scholar
[136]
Schweighofer A, Hirt H, Meskiene I (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 9(5): 236-243
CrossRef Pubmed Google scholar
[137]
Sethuraman M, McComb M E, Huang H, Huang S, Heibeck T, Costello C E, Cohen R A (2004). Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res, 3(6): 1228-1233
CrossRef Pubmed Google scholar
[138]
Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J, Howe G A, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 468(7322): 400-405
CrossRef Pubmed Google scholar
[139]
Shen Y Y, Wang X F, Wu F Q, Du S Y, Cao Z, Shang Y, Wang X L, Peng C C, Yu X C, Zhu S Y, Fan R C, Xu Y H, Zhang D P (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443(7113): 823-826
CrossRef Pubmed Google scholar
[140]
Shimazaki K, Kinoshita T, Nishimura M (1992). Involvement of calmodulin and dalmodulin-dependent myosin light chain kinase in blue light-dependent H pumping by guard cell protoplasts from Vicia faba L. Plant Physiol, 99(4): 1416-1421
CrossRef Pubmed Google scholar
[141]
Shinozaki K, Yamaguchi-Shinozaki K (2006). Gene networks involved in drought stress response and tolerance. J Exp Bot, 58(2): 221-227
CrossRef Pubmed Google scholar
[142]
Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S (2010). The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE, 5(11): e13935
CrossRef Pubmed Google scholar
[143]
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009). The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot, 60(5): 1439-1463
CrossRef Pubmed Google scholar
[144]
Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt M R (2005). Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J, 43(4): 520-529
CrossRef Pubmed Google scholar
[145]
Stone J M, Walker J C (1995). Plant protein kinase families and signal transduction. Plant Physiol, 108(2): 451-457
CrossRef Pubmed Google scholar
[146]
Suhita D, Kolla V, Vavasseur A, Raghavendra A (2003). Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci, 164(4): 481-488
CrossRef Google scholar
[147]
Suhita D, Raghavendra A S, Kwak J M, Vavasseur A (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol, 134(4): 1536-1545
CrossRef Pubmed Google scholar
[148]
Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem, 275(18): 13175-13178
CrossRef Pubmed Google scholar
[149]
Suzuki N, Koussevitzky S, Mittler R, Miller G (2011). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ: no
CrossRef Pubmed Google scholar
[150]
Tähtiharju S, Palva T (2001). Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J, 26(4): 461-470
CrossRef Pubmed Google scholar
[151]
Taiz L, Zeiger E (2006). Plant Physiology (4th ed). Sunderland: Sinauer Associates Inc
[152]
Taj G, Agarwal P, Grant M, Kumar A (2010). MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav, 5(11): 1370-1378
CrossRef Pubmed Google scholar
[153]
Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006). gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ, 29(4): 619-631
CrossRef Pubmed Google scholar
[154]
Thiel G, Blatt M (1994). Phosphatase antagonist okadaic acid inhibits steady state K+ currents in guard cells of Vicia faba. Plant J, 5(5): 727-733
CrossRef Google scholar
[155]
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154): 661-665
CrossRef Pubmed Google scholar
[156]
Tominaga M, Harada A, Kinoshita T, Shimazaki K (2010). Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol, 51(3): 408-421
CrossRef Pubmed Google scholar
[157]
Tsuzuki T, Takahashi K, Inoue S, Okigaki Y, Tomiyama M, Hossain M A, Shimazaki K, Murata Y, Kinoshita T (2011). Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res, 124(4): 527-538
CrossRef Pubmed Google scholar
[158]
Vahisalu T, Puzõrjova P, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang Y S, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62: 442-453
[159]
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F (2011). Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 62(2): 545-555
CrossRef Pubmed Google scholar
[160]
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1): 44-84
CrossRef Pubmed Google scholar
[161]
Vavasseur A, Raghavendra A S (2005). Guard cell metabolism and CO2 sensing. New Phytol, 165(3): 665-682
CrossRef Pubmed Google scholar
[162]
Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez P L, Laurière C, Merlot S (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell, 21(10): 3170-3184
CrossRef Pubmed Google scholar
[163]
Wang R S, Pandey S, Li S, Gookin T E, Zhao Z, Albert R, Assmann S M (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics, 12(1): 216
CrossRef Pubmed Google scholar
[164]
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008). An update on abscisic acid signaling in plants and more.... Mol Plant, 1(2): 198-217
CrossRef Pubmed Google scholar
[165]
West A H, Stock A M (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci, 26(6): 369-376
CrossRef Pubmed Google scholar
[166]
Wilkinson S, Davies W J (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ, 25(2): 195-210
CrossRef Pubmed Google scholar
[167]
Wu Y, Kuzma J, Maréchal E, Graeff R, Lee H C, Foster R, Chua N H (1997). Abscisic acid signaling through cyclic ADP-ribose in plants. Science, 278(5346): 2126-2130
CrossRef Pubmed Google scholar
[168]
Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280(5366): 1091-1094
CrossRef Pubmed Google scholar
[169]
Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder J I (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J, 30(8): 1645-1658
CrossRef Pubmed Google scholar
[170]
Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 16(12): 1230-1236
CrossRef Pubmed Google scholar
[171]
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2005). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem, 281(8): 5310-5318
CrossRef Pubmed Google scholar
[172]
Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, Song C P (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol, 126(4): 1438-1448
CrossRef Pubmed Google scholar
[173]
Zhao Z, Stanley B A, Zhang W, Assmann S M (2010). ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res, 9(4): 1637-1647
CrossRef Pubmed Google scholar
[174]
Zhao Z, Zhang W, Stanley B A, Assmann S M (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell, 20(12): 3210-3226
CrossRef Pubmed Google scholar
[175]
Zhu M, Dai S, McClung S, Yan X, Chen S (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics, 8(4): 752-766
CrossRef Pubmed Google scholar
[176]
Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 19(10): 3019-3036
CrossRef Pubmed Google scholar

Acknowledgments

The research on guard cells was supported by grants from the US National Science Foundation (MCB 0818051) and the National Institute of Health (1S10RR025418-01) to S. Chen, and grants from the National Natural Science Foundation of China (Grant No. 31071194) and Funds for Distinguished Young Scientists of Heilongjiang Province, China (No. JC201011) to S. Dai.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(501 KB)

Accesses

Citations

Detail

Sections
Recommended

/