Molecular evolution of methanogens based on their metabolic facets

P. CHELLAPANDI

PDF(1073 KB)
PDF(1073 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (6) : 490-503. DOI: 10.1007/s11515-011-1154-2
REVIEW
REVIEW

Molecular evolution of methanogens based on their metabolic facets

Author information +
History +

Abstract

The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms. This review describes the advantages of using metabolic pathways to clarify evolutionary correlation of methanogens with archaea and prokaryotes. Metabolic trees can be used to highlight similarities in metabolic networks related to the biology of methanogens. Metabolic genes are among the most modular in the cell and their genes are expected to travel laterally, even in recent evolution. Phylogenetic analysis of protein superfamilies provides a perspective on the evolutionary history of some key metabolic modules of methanogens. Phage-related genes from distantly related organisms typically invade methanogens by horizontal gene transfer. Metabolic modules in methanogenesis are phylogenetically aligned in closely related methanogens. Reverse order reactions of methanogenesis are achieved in methylotrophic methanogens using metabolic and structural modules of key enzymes. A significant evolutionary process is thought to couple the utilization of heavy metal ions with energetic metabolism in methanogens. Over 30 of methanogens genomes have been sequenced to date, and a variety of databases are being developed that will provide for genome annotation and phylogenomic analysis of methanogens. Into the context of the evolutionary hypothesis, the integration of metabolomic and proteomic data into large-scale mathematical models holds promise for fostering rational strategies for strain improvement.

Keywords

methanogens / genomics / metabolic module / phylogeny / protein superfamily / molecular evolution

Cite this article

Download citation ▾
P. CHELLAPANDI. Molecular evolution of methanogens based on their metabolic facets. Front Biol, 2011, 6(6): 490‒503 https://doi.org/10.1007/s11515-011-1154-2

References

[1]
Aguilar D, Aviles F X, Querol E, Sternberg M J (2004). Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J Mol Biol, 340(3): 491–512
CrossRef Pubmed Google scholar
[2]
Apic G, Gough J, Teichmann S A (2001). Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol, 310(2): 311–325
CrossRef Pubmed Google scholar
[3]
Bansal A K (1999). An automated comparative analysis of 17 complete microbial genomes. Bioinformatics, 15(11): 900–908
CrossRef Pubmed Google scholar
[4]
Bapteste E, Brochier C, Boucher Y (2005). Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea, 1(5): 353–363
CrossRef Pubmed Google scholar
[5]
Beja O, Aravind L, Koonin E V, Suzuki M T, Hadd A, Nguyen L P, Jovanovich S B, Gates C M, Feldman R A, Spudich J L, Spudich E N, DeLong E F (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289(5486): 1902–1906
CrossRef Pubmed Google scholar
[6]
Briones C, Manrubia S C, Lázaro E, Lazcano A, Amils R (2005). Reconstructing evolutionary relationships from functional data: a consistent classification of organisms based on translation inhibition response. Mol Evol Phylogenet, 34(2): 371–381
CrossRef Pubmed Google scholar
[7]
Brochier C, Forterre P, Gribaldo S (2004). Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol, 5(3): R17
CrossRef Pubmed Google scholar
[8]
Brochier C, Forterre P, Gribaldo S (2005). An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol, 5(1): 36
CrossRef Pubmed Google scholar
[9]
Brown J R, Doolittle W F (1997). Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev, 61(4): 456–502
Pubmed
[10]
Brown J R, Douady C J, Italia M J, Marshall W E, Stanhope M J (2001). Universal trees based on large combined protein sequence data sets. Nat Genet, 28(3): 281–285
CrossRef Pubmed Google scholar
[11]
Bult C J, White O, Olsen G J, Zhou L, Fleischmann R D, Sutton G G, Blake J A, FitzGerald L M, Clayton R A, Gocayne J D, Kerlavage A R, Dougherty B A, Tomb J F, Adams M D, Reich C I, Overbeek R, Kirkness E F, Weinstock K G, Merrick J M, Glodek A, Scott J L, Geoghagen N S M, Venter J C, Fuhrmann J L, Nguyen D, Utterback T R, Kelley J M, Peterson J D, Sadow P W, Hanna M C, Cotton M D, Roberts K M, Hurst M A, Kaine B P, Borodovsky M, Klenk H P, Fraser C M, Smith H O, Woese C R, Venter C J (1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science, 273(5278): 1058–1073
CrossRef Pubmed Google scholar
[12]
Chellapandi P (2004). Enzymes and microbiological pretreatments of oil industry wastes for biogas production in batch digesters. In: Pathade G R, Goel P K, ed. Biotechnology in Environmental Management, India: ABD Publishers
[13]
Chellapandi P (2011). A molecular conception for protein engineering algorithms. Adv Biotech, 10(7): 41–46
[14]
Chellapandi P, Dhivya C (2010). Overview of microbial metabolomics: A special insight to cyanobacterial methylotrophy. J Adv Develop Res, 1: 59–73
[15]
Chellapandi P, Kalaimathy S (2010). Molecular aspects of β-galactosidase production system in Aspergillus genomes. J Adv Develop Res, 1: 81–89
[16]
Chellapandi P, Karthigeyan C, Sivaramakrishnan S (2009). Evolutionary implication of protein secondary structure among archaea and bacteria. Internet J Genomics Proteomics, 4(2)
[17]
Chellapandi P, Prabaharan D, Uma L (2008). A preliminary study on co-digestion of ossein factory waste for methane production. EurAsian J Biosci, 2: 110–114
[18]
Chellapandi P, Prabaharan D, Uma L (2010a). Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol, 162(2): 524–535
CrossRef Pubmed Google scholar
[19]
Chellapandi P, Ranjani J (2011). Molecular machinery of CRISPR-CAS system – RNA mediated defense pathway in Prokaryotes. Asian J Biotechnol, 3(4): 329–336
CrossRef Google scholar
[20]
Chellapandi P, Sivaramakrishnan S, Viswanathan M B (2010b). Systems biotechnology: An emerging trend in metabolic engineering of industrial microorganisms. J Comput Sci Syst Biol, 3(2): 43–49
[21]
Chellapandi P, Sivaramakrishnan S (2011). In: Baginski S J, ed. Protein superfamilies based phylogenomic analysis of archaeal domain. Biochemistry Research Updates, USA: Nova Science Publications, Inc.
[22]
Chellapandi P, Suman L S, Sivaramakrishnan S (2007). Biomethanation of fungal predigested caster seed cake in acclimatized seed. Biotechnol: An Indian Journal, 1: 19–24
[23]
Chistoserdova L, Vorholt J A, Thauer R K, Lidstrom M E (1998). C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science, 281(5373): 99–102
CrossRef Pubmed Google scholar
[24]
Corbett K D, Berger J M (2003). Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J, 22(1): 151–163
CrossRef Pubmed Google scholar
[25]
Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H (2005). A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea, 1(6): 399–410
CrossRef Pubmed Google scholar
[26]
Daubin V, Gouy M, Perrière G (2002). A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res, 12(7): 1080–1090
CrossRef Pubmed Google scholar
[27]
Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz R A, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H P, Gunsalus R P, Fritz H J, Gottschalk G (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 4(4): 453–461
Pubmed
[28]
Doolittle R F, Feng D F, Tsang S, Cho G, Little E (1996). Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 271(5248): 470–477
CrossRef Pubmed Google scholar
[29]
Downs D M (2006). Understanding microbial metabolism. Annu Rev Microbiol, 60(1): 533–559
CrossRef Pubmed Google scholar
[30]
Dvornyk V, Vinogradova O, Nevo E (2003). Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A, 100(5): 2495–2500
CrossRef Pubmed Google scholar
[31]
Edgell D R, Doolittle W F (1997). Archaea and the origin(s) of DNA replication proteins. Cell, 89(7): 995–998
CrossRef Pubmed Google scholar
[32]
Eisen J A (1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res, 8(3): 163–167
Pubmed
[33]
Feng D F, Cho G, Doolittle R F (1997). Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A, 94(24): 13028–13033
CrossRef Pubmed Google scholar
[34]
Fitz-Gibbon S T, House C H (1999). Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res, 27(21): 4218–4222
CrossRef Pubmed Google scholar
[35]
Forst C V, Schulten K (1999). Evolution of metabolisms: a new method for the comparison of metabolic pathways using genomics information. J Comput Biol, 6(3–4): 343–360
CrossRef Pubmed Google scholar
[36]
Forst C V, Schulten K (2001). Phylogenetic analysis of metabolic pathways. J Mol Evol, 52(6): 471–489
Pubmed
[37]
Fournier G P, Gogarten J P (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol, 190(3): 1124–1127
CrossRef Pubmed Google scholar
[38]
Friedrich M W (2005). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol, 397: 428–442
CrossRef Pubmed Google scholar
[39]
Frigaard N U, Martinez A, Mincer T J, DeLong E F (2006). Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature, 439(7078): 847–850
CrossRef Pubmed Google scholar
[40]
Gaasterland T, Ragan M A (1998). Constructing multigenome views of whole microbial genomes. Microb Comp Genomics, 3(3): 177–192
CrossRef Pubmed Google scholar
[41]
Gadelle D, Filée J, Buhler C, Forterre P (2003). Phylogenomics of type II DNA topoisomerases. Bioessays, 25(3): 232–242
CrossRef Pubmed Google scholar
[42]
Galagan J E C, Nusbaum C, Roy A, Endrizzi M G, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber R D, Cann I, Graham D E, Grahame D A, Guss A M, Hedderich R, Ingram-Smith C, Kuettner H C, Krzycki J A, Leigh J A, Li W, Liu J, Mukhopadhyay B, Reeve J N, Smith K, Springer T A, Umayam L A, White O, White R H, Conway de Macario E, Ferry J G, Jarrell K F, Jing H, Macario A J, Paulsen I, Pritchett M, Sowers K R, Swanson R V, Zinder S H, Lander E, Metcalf W W, Birren B (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res, 12(4): 532–542
CrossRef Pubmed Google scholar
[43]
Graham D E, Overbeek R, Olsen G J, Woese C R (2000). An archaeal genomic signature. Proc Natl Acad Sci U S A, 97(7): 3304–3308
CrossRef Pubmed Google scholar
[44]
Hallam S J, Girguis P R, Preston C M, Richardson P M, DeLong E F (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol, 69(9): 5483–5491
CrossRef Pubmed Google scholar
[45]
Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305(5689): 1457–1462
CrossRef Pubmed Google scholar
[46]
Hartzell P L, Zvilius G, Escalante-Semerena J C, Donnelly M I (1985). Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun, 133(3): 884–890
CrossRef Pubmed Google scholar
[47]
Hedges S B (2002). The origin and evolution of model organisms. Nat Rev Genet, 3(11): 838–849
Pubmed
[48]
Hedges S B, Kumar S (2004). Precision of molecular time estimates. Trends Genet, 20(5): 242–247
CrossRef Pubmed Google scholar
[49]
Heymans M, Singh A K (2003). Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics, 19(Suppl 1): i138–i146
CrossRef Pubmed Google scholar
[50]
Hong S H, Kim T Y, Lee S Y (2004). Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol, 65(2): 203–210
CrossRef Pubmed Google scholar
[51]
Huynen M A, Bork P (1998). Measuring genome evolution. Proc Natl Acad Sci U S A, 95(11): 5849–5856
CrossRef Pubmed Google scholar
[52]
John U, Fensome R A, Medlin L K (2003). The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol, 20(7): 1015–1027
CrossRef Pubmed Google scholar
[53]
Johnson E F, Mukhopadhyay B (2005). A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem, 280(46): 38776–38786
CrossRef Pubmed Google scholar
[54]
Johnson E F, Mukhopadhyay B (2007). A novel coenzyme F420 dependent sulfite reductase and a small sulfite reductase in methanogenic archaea. In: Dahl C, Friedrich C G, eds. Microbial Sulfur Metabolism, Berlin: Springer, 202–216
[55]
Kalyuzhnaya M G, Bowerman S, Nercessian O, Lidstrom M E, Chistoserdova L (2005). Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol, 71(12): 8846–8854
CrossRef Pubmed Google scholar
[56]
Karthigeyan C, Sivaramakrishnan S, Chellapandi P (2007). Phylogenomic analysis of archaeal domain. Bioinformatics Trends, 2(1): 37–55
[57]
Kato N, Yurimoto H, Thauer R K (2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem, 70(1): 10–21
CrossRef Pubmed Google scholar
[58]
Klein M, Friedrich M, Roger A J, Hugenholtz P, Fishbain S, Abicht H, Blackall L L, Stahl D A, Wagner M (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol, 183(20): 6028–6035
CrossRef Pubmed Google scholar
[59]
Klenk H P, Clayton R A, Tomb J F, White O, Nelson K E, Ketchum K A, Dodson R J, Gwinn M, Hickey E K, Peterson J D, Richardson D L, Kerlavage A R, Graham D E, Kyrpides N C, Fleischmann R D, Quackenbush J, Lee N H, Sutton G G, Gill S, Kirkness E F, Dougherty B A, McKenney K, Adams M D, Loftus B, Peterson S, Reich C I, McNeil L K, Badger J H, Glodek A, Zhou L, Overbeek R, Gocayne J D, Weidman J F, McDonald L, Utterback T, Cotton M D, Spriggs T, Artiach P, Kaine B P, Sykes S M, Sadow P W, D’Andrea K P, Bowman C, Fujii C, Garland S A, Mason T M, Olsen G J, Fraser C M, Smith H O, Woese C R, Venter J C (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390(6658): 364–370
CrossRef Pubmed Google scholar
[60]
Koonin E V (2005). Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet, 39(1): 309–338
CrossRef Pubmed Google scholar
[61]
Koonin E V, Mushegian A R, Galperin M Y, Walker D R (1997). Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol, 25(4): 619–637
CrossRef Pubmed Google scholar
[62]
Koonin E V, Wolf Y I (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res, 36(21): 6688–6719
CrossRef Pubmed Google scholar
[63]
Koonin E V, Wolf Y I, Kondrashov A S, Aravind L (2000). Bacterial homologs of the small subunit of eukaryotic DNA primase. J Mol Microbiol Biotechnol, 2(4): 509–512
Pubmed
[64]
Kyrpides N C, Olsen G J, Klenk H P, White O, Woese C R (1996). Methanococcus jannaschii genome: revisited. Microb Comp Genomics, 1(4): 329–338
Pubmed
[65]
Lake J A, Clark M W, Henderson E, Fay S P, Oakes M, Scheinman A, Thornber J P, Mah R A (1985). Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A, 82(11): 3716–3720
CrossRef Pubmed Google scholar
[66]
Ma H W, Zeng A P (2004). Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol, 31(1): 204–213
CrossRef Pubmed Google scholar
[67]
Macario A J, Lange M, Ahring B K, Conway de Macario E (1999). Stress genes and proteins in the archaea. Microbiol Mol Biol Rev, 63(4): 923–967
Pubmed
[68]
Makarova K S, Koonin E V (2003). Comparative genomics of Archaea: how much have we learned in six years, and what’s next? Genome Biol, 4(8): 115
CrossRef Pubmed Google scholar
[69]
Makarova K S, Koonin E V (2007). Evolutionary genomics of lactic acid bacteria. J Bacteriol, 189(4): 1199–1208
CrossRef Pubmed Google scholar
[70]
Masinovsky Z, Lozovaya G I, Sivash A A (1992). Some aspects of the early evolution of photosynthesis. Adv Space Res, 12(4): 199–205
CrossRef Pubmed Google scholar
[71]
Min H, Zinder S H (1989). Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl Environ Microbiol, 55(2): 488–491
Pubmed
[72]
Morii H, Kiyonari S, Ishino Y, Koga Y (2009). A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J Biol Chem, 284(45): 30766–30774
CrossRef Pubmed Google scholar
[73]
Müller V, Spanheimer R, Santos H (2005). Stress response by solute accumulation in archaea. Curr Opin Microbiol, 8(6): 729–736
CrossRef Pubmed Google scholar
[74]
Nielsen J, Oliver S (2005). The next wave in metabolome analysis. Trends Biotechnol, 23(11): 544–546
CrossRef Pubmed Google scholar
[75]
Nolling J, Elfner A, Palmer J R, Steigerwald V J, Pihl T D, Lake J A, Reeve J N (1996). Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol, 46(4): 1170–1173
CrossRef Pubmed Google scholar
[76]
Olsen G J, Woese C R (1997). Archaeal genomics: an overview. Cell, 89(7): 991–994
CrossRef Pubmed Google scholar
[77]
Pagel M (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756): 877–884
CrossRef Pubmed Google scholar
[78]
Patel C N, Chellapandi P (2008). Anaerobic digestion of cotton seed cake using developed mixed consortia. Electronic J Environ Agri Food Chem, 7: 3035–3046
[79]
Ponomarev V A, Makarova K S, Aravind L, Koonin E V (2003). Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. J Mol Microbiol Biotechnol, 5(4): 225–229
CrossRef Pubmed Google scholar
[80]
Razia M, Karthik Raja R, Padmanaban K, Sivaramakrishnan S, Chellapandi P (2010). Phylogenetic approach for assigning function of hypothetical proteins in Photorhabdus luminescens subsp. laumondii T101 genome. J Comput Sci Syst Biol, 3(1): 21–29
CrossRef Google scholar
[81]
Razia M, Padmanaban K, Karthick Raja R, Chellapandi P, Sivaramakrishnan S (2011). 16S rDNA-based phylogeny of non-symbiotic bacteria associating entomopathogenic nematode from infected insect cadavers. Genomics Proteomics Bioinformatics (In press)
[82]
Schmidt S, Christen P, Kiefer P, Vorholt J A (2010). Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology, 156(Pt 8): 2575–2586
CrossRef Pubmed Google scholar
[83]
Schopf J W (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci, 361(1470): 869–885
CrossRef Pubmed Google scholar
[84]
Snel B, Bork P, Huynen M A (1999). Genome phylogeny based on gene content. Nat Genet, 21(1): 108–110
CrossRef Pubmed Google scholar
[85]
Snel B, Bork P, Huynen M A (2002). Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res, 12(1): 17–25
CrossRef Pubmed Google scholar
[86]
Tatusov R L, Koonin E V, Lipman D J (1997). A genomic perspective on protein families. Science, 278(5338): 631–637
CrossRef Pubmed Google scholar
[87]
Tekaia F, Lazcano A, Dujon B (1999). The genomic tree as revealed from whole proteome comparisons. Genome Res, 9(6): 550–557
Pubmed
[88]
Thauer R K (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology, 144(Pt 9): 2377–2406
CrossRef Pubmed Google scholar
[89]
Thauer R K, Bonacker L G (1994). Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp, 180: 210–222
Pubmed
[90]
Thauer R K, Kaster A K, Seedorf H, Buckel W, Hedderich R (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6(8): 579–591
CrossRef Pubmed Google scholar
[91]
van Hoek A H A M, van Alen T A, Sprakel V S I, Leunissen J A, Brigge T, Vogels G D, Hackstein J H P (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol, 17(2): 251–258
Pubmed
[92]
Vedhagiri K, Natarajaseenivasan K, Chellapandi P, Prabhakaran S G, Selvin J, Sharma S, Vijayachari P (2009). Evolutionary implication of outer membrane lipoprotein-encoding genes ompL1, UpL32 and lipL41 of pathogenic Leptospira species. Genomics Proteomics Bioinformatics, 7(3): 96–106
CrossRef Pubmed Google scholar
[93]
Verhees C H, Kengen S W, Tuininga J E, Schut G J, Adams M W W, de VOS W M, van der Oost J (2003). The unique features of glycolytic pathways in Archaea. Biochem J, 375(Pt 2): 231–246
CrossRef Pubmed Google scholar
[94]
Vorholt J A, Marx C J, Lidstrom M E, Thauer R K (2000). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol, 182(23): 6645–6650
CrossRef Pubmed Google scholar
[95]
Vothknecht U C, Tumbula D L (1999). Archaea: from genomics to physiology and the origin of life. Trends Cell Biol, 9(4): 159–161
CrossRef Pubmed Google scholar
[96]
Waters E, Hohn M J, Ahel I, Graham D E, Adams M D, Barnstead M, Beeson K Y, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton G G, Simon M, Söll D, Stetter K O, Short J M, Noordewier M (2003). The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A, 100(22): 12984–12988
CrossRef Pubmed Google scholar
[97]
Wilson R C, Bohlen C J, Foster M P, Bell C E (2006). Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A, 103(4): 873–878
CrossRef Pubmed Google scholar
[98]
Woese C R, Kandler O, Wheelis M L (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A, 87(12): 4576–4579
CrossRef Pubmed Google scholar
[99]
Woese C R, Magrum L J, Fox G E (1978). Archaebacteria. J Mol Evol, 11(3): 245–251
CrossRef Pubmed Google scholar

Acknowledgements

The author kindly acknowledges the University Grants Commission, New Delhi, India, for financial assistance (32-559/2006) to carry out work described in this review.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1073 KB)

Accesses

Citations

Detail

Sections
Recommended

/