Population level virulence in polymicrobial communities associated with chronic disease

Jeff G. LEID, Emily COPE

PDF(250 KB)
PDF(250 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (6) : 435-445. DOI: 10.1007/s11515-011-1153-3
REVIEW
REVIEW

Population level virulence in polymicrobial communities associated with chronic disease

Author information +
History +

Abstract

Renewed studies of chronic infection have shifted the focus from single pathogens to multi-microbial communities as culture-independent techniques reveal complex consortia of microbes associated with chronic disease. Despite a general acceptance that some chronic diseases are caused by mixed microbial communities, areas of research exploring community interactions as they relate to the alteration of virulence are still in the early stages. Members of the NIH Human Microbiome Project have been actively characterizing the microbial communities of the skin, nasal, oral, gastrointestinal, and urogenital cavities of healthy adults. Concomitantly, several independent studies have begun to characterize the oral, nasal, sinus, upper and lower respiratory microbiomes in healthy and diseased human tissue. The interactions among the members of these polymicrobial communities have not been thoroughly explored and it is clear there is a need to identify the functional interactions that drive population-level virulence if new therapeutic approaches to chronic disease are to be developed. For example, multiple studies have examined the role of quorum sensing (QS) in microbial virulence, and QS antagonists are being developed and tested as novel therapeutics. Other potential targets include the Gram-negative type III signaling system (T3SS), type IV pili, and two component regulatory systems (TCRS). Initial results from these studies indicate limited efficacy in vivo, further suggesting that the interactions in a heterogeneous community are complex and poorly understood. If progress is to be made in the development of more effective treatments for chronic diseases, a better understanding of the composition and functional interactions that occur within multi-microbial communities must be developed.

Keywords

polymicrobial / chronic infection / quorum sensing / therapeutics

Cite this article

Download citation ▾
Jeff G. LEID, Emily COPE. Population level virulence in polymicrobial communities associated with chronic disease. Front Biol, 2011, 6(6): 435‒445 https://doi.org/10.1007/s11515-011-1153-3

References

[1]
Anzaudo M M, Busquets N P, Ronchi S, Mayoral C (2005). Isolated pathogen microorganisms in respiratory samples from children with cystic fibrosis. Rev Argent Microbiol, 37(3): 129–134
Pubmed
[2]
Armbruster C E, Hong W, Pang B, Weimer K E, Juneau R A, Turner J, Swords W E (2010). Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio, 1(3): e00102-10–e00102-19
CrossRef Pubmed Google scholar
[3]
Arthur M, Molinas C, Courvalin P (1992). The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol, 174(8): 2582–2591
Pubmed
[4]
Baddour L M, Christensen G D (1987). Prosthetic valve endocarditis due to small-colony staphylococcal variants. Rev Infect Dis, 9(6): 1168–1174
CrossRef Pubmed Google scholar
[5]
Bader M S (2008). Diabetic foot infection. Am Fam Physician, 78(1): 71–79
Pubmed
[6]
Bakaletz L O (2010). Immunopathogenesis of polymicrobial otitis media. J Leukoc Biol, 87(2): 213–22
[7]
Bala A, Kumar R, Harjai K(2011). Inhibition of quorum sensing in Pseudomonas aeruginosaby azithromycin and its effectiveness in urinary tract infections. J Med Microbiol, 60(Pt 3): 300–306
[8]
Bassler B L (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol, 2(6): 582–587
[9]
Bassler B L, Wright M, Silverman M R (1994). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol, 13(2): 273–286
CrossRef Pubmed Google scholar
[10]
Bjarnsholt T, Givskov M (2007). Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci, 362(1483): 1213–22
[11]
Bjarnsholt T, Jensen P O, Jakobsen T H, Phipps R, Nielsen A K, Rybtke M T, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O, the Scandinavian Cystic Fibrosis Study Consortium (2010). Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One, 5(4): e10115
CrossRef Pubmed Google scholar
[12]
Boles B R , Thoendel M, Singh P K(2005). Genetic variation in biofilms and the insurance effects of diversity. Microbiology, 151(Pt 9: 2816–2818
[13]
Brown S M (2010). Multiple strains of non-tuberculous mycobacteria in a patient with cystic fibrosis. J R Soc Med, 103(Suppl 1): 34–43
[14]
Burmolle M, Thomsen T R, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B, Tolker-Nielsen T, Givskov M, Moser C, Kirketerp-Moller K, Johansen H K , Hoiby N, Jensen P O, Sorensen S J, Bjarnsholt T (2010). Biofilms in chronic infections — a matter of opportunity — monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol, 59(3), 324–336
[15]
Burns J L, Emerson J, Stapp J R, Yim D L, Krzewinski J, Louden L, Ramsey B W, Clausen C R (1998). Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis, 27(1): 158–163
CrossRef Pubmed Google scholar
[16]
Chan J, Hadley J (2001). The microbiology of chronic rhinosinusitis: results of a community surveillance study. Ear Nose Throat J, 80(3): 143–145
Pubmed
[17]
Charlson E S, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman F D, Collman R G (2010). Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS ONE, 5(12): e15216
CrossRef Pubmed Google scholar
[18]
Chen P B, Davern L B, Katz J, Eldridge J H, Michalek S M (1996). Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. Oral Microbiol Immunol, 11(4): 274–281
CrossRef Pubmed Google scholar
[19]
Cherry D K, Woodwell D A (2002). National Ambulatory Medical Care Survey: 2000 summary. Adv Data, 328: 1–32
[20]
Deng D M, Liu M J, ten Cate J M, Crielaard W (2007). The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res, 86(7): 606–610
[21]
Dewhirst F E, Chen T, Izard J, Paster B J, Tanner A C, Yu W H, Lakshmanan A, Wade W G (2010). The human oral microbiome. J Bacteriol, 192(19): 5002–5017
[22]
Duque C, Stipp R N, Wang B, Smith D J, Hofling J F, Kuramitsu H K, Duncan M J, Mattos-Graner R O (2011). Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun, 79(2): 786–796
[23]
Ebersole J L, Feuille F, Kesavalu L, Holt S C (1997). Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Microb Pathog, 23(1): 23–32
[24]
Ehrlich G D, Ahmed A, Earl J, Hiller N L, Costerton J W, Stoodley P, Post J C, Demeo P, Hu F Z (2010). The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol Med Microbiol, 59(3): 269–279
[25]
Ehrlich G D, Hiller N L, Hu F Z (2008). What makes pathogens pathogenic. Genome Biol, 9(6): 225
[26]
Ehrlich G D, Hu F Z, Shen K, Stoodley P, Post J C (2005). Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res, (437):20–24
[27]
Evers S, Courvalin P (1996). Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol, 178(5): 1302–1309
Pubmed
[28]
Falleiros de Padua R A, Norman Negri M F, Svidzinski A E, Nakamura C V, Svidzinski T I (2008). Adherence of Pseudomonas aeruginosa and Candida albicans to urinary catheters. Rev Iberoam Micol, 25(3): 173–175
[29]
Feuille F, Ebersole J L, Kesavalu L, Stepfen M J, Holt S C (1996). Mixed infection with Porphyromonas gingivalis and Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence. Infect Immun, 64(6): 2094–2100
Pubmed
[30]
Foreman A, Psaltis A J, Tan L W, Wormald P J (2009). Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am J Rhinol Allergy, 23(6): 556–561
CrossRef Pubmed Google scholar
[31]
Foreman A, Wormald P J (2010). Different biofilms, different disease? A clinical outcomes study. Laryngoscope, 120(8): 1701–1706
CrossRef Pubmed Google scholar
[32]
Galperin M Y(2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol, 188(12): 4169–4182
[33]
Geske G D, O’Neill J C, Blackwell H E (2007). N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem Biol, 2(5): 315–319
CrossRef Pubmed Google scholar
[34]
Geske G D, O’Neill J C, Miller D M, Mattmann M E, Blackwell H E (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc, 129(44): 13613–13625
CrossRef Pubmed Google scholar
[35]
Gotoh Y, Doi A, Furuta E, Dubrac S, Ishizaki Y, Okada M, Igarashi M, Misawa N, Yoshikawa H, Okajima T, Msadek T, Utsumi R(2010). Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo), 63(3): 127–134
[36]
Guggenheim B, Gmur R, Galicia J C, Stathopoulou P G, Benakanakere M R, Meier A, Thurnheer T, Kinane D F(2009). In vitro modeling of host-parasite interactions: the ‘subgingival’ biofilm challenge of primary human epithelial cells. BMC Microbiol, 9: 280
[37]
Hall-Stoodley L, Hu F Z, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg D P, Dice B, Burrows A, Wackym P A, Stoodley P, Post J C, Ehrlich G D, Kerschner J E(2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA, 296(2): 202–211
[38]
Healy D Y, Leid J G, Sanderson A R, Hunsaker D H(2008). Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg, 138(5): 641–647
[39]
Hemady R K (1995). Microbial keratitis in patients infected with the human immunodeficiency virus. Ophthalmology, 102(7): 1026–1030
Pubmed
[40]
Hentzer M, Eberl L, Nielsen J, Givskov M(2003). Quorum sensing: a novel target for the treatment of biofilm infections. BioDrugs, 17(4): 241–250
[41]
Hentzer M, Wu H, Andersen J B, Riedel K, Rasmussen T B, Bagge N, Kumar N, Schembri M A, Song Z, Kristoffersen P, Manefield M, Costerton J W, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J, 22(15): 3803–3815
CrossRef Pubmed Google scholar
[42]
Hermann C, Hermann J, Munzel U, Røchel R (1999). Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses, 42(11-12): 619–627
CrossRef Pubmed Google scholar
[43]
Higgins D A, Pomianek M E, Kraml C M, Taylor R K, Semmelhack M F, Bassler B L(2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450(7171): 883–886
[44]
HoffmanL R, Deziel E, D'Argenio D A, Lepine F, Emerson J, McNamara S, Gibson R L, Ramsey B W, Miller S I(2006). Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 103(52): 19890–19895
[45]
Hogan D A, Kolter R (2002). Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 296(5576): 2229–22232
[46]
Hoiby N (1974). Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. Acta Pathol Microbiol Scand B Microbiol Immunol, 82(4): 541–550
Pubmed
[47]
Høiby N, Ciofu O, Bjarnsholt T (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol, 5(11): 1663–1674
CrossRef Pubmed Google scholar
[48]
Holcombe L J, McAlester G, Munro C A, Enjalbert B, Brown A J, Gow N A, Ding C, Butle G R, O’Gara F, Morrissey J P(2010). Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans . Microbiology, 156(Pt 5): 1476–1486
[49]
Hong H J, Hutchings M I, Buttner M J, the Biotechnology and Biological Sciences Research Council, U K (2008). Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol, 631: 200–213
CrossRef Pubmed Google scholar
[50]
Hu F Z, Ehrlich G D (2008). Population-level virulence factors amongst pathogenic bacteria: relation to infection outcome. Future Microbiol, 3(1): 31–42
CrossRef Pubmed Google scholar
[51]
Ito R, Ishihara K, Shoji M, Nakayama K, Okuda K (2010). Hemagglutinin/adhesin domains of Porphyromonas gingivalis play key roles in coaggregation with Treponema denticola. FEMS Immunol Med Microbiol, 60(3): 251–260
CrossRef Pubmed Google scholar
[52]
Jakubovics N S, Kolenbrander P E(2010). The road to ruin: the formation of disease-associated oral biofilms. Oral Dis, 16(8): 729–739
[53]
Jenkinson H F, Lamont R J(2005). Oral microbial communities in sickness and in health. Trends Microbiol, 13(12): 589–595
[54]
Jesaitis A J, Franklin M J, Berglund D, Sasaki M, Lord C I, Bleazard J B, Duffy J E, Beyenal H, Lewandowski Z (2003). Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol, 171(8): 4329–4339
Pubmed
[55]
Jones M B, Peterson S N, Benn R, Braisted J C, Jarrahi B, Shatzkes K, Ren D, Wood T K, Blaser M J(2010). Role of luxS in Bacillus anthracis growth and virulence factor expression. Virulence, 1(2): 72–83
[56]
Kahl B, Herrmann M, Everding A S, Koch H G, Becker K, Harms E, Proctor R A, Peters G (1998). Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis, 177(4): 1023–1029
Pubmed
[57]
Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K(2004a). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett, 230(1): 13–18
[58]
Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol, 186(24): 8172–8180
[59]
Kesavalu L, Holt S C, Ebersole J L (1998). Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol Immunol, 13(6): 373–377
CrossRef Pubmed Google scholar
[60]
Klinger J D, Thomassen M J(1985). Occurrence and antimicrobial susceptibility of Gram-negative nonfermentative bacilli in cystic fibrosis patients. Diagn Microbiol Infect Dis, 3(2): 149–158
[61]
Kolenbrander P E(2000). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol, 54: 413–437
[62]
Kolenbrander P E, Andersen R N, Blehert D S, Egland P G, Foster J S, Palmer R J Jr(2002). Communication among oral bacteria. Microbiol Mol Biol Rev, 66(3): 486–505
[63]
Kolenbrander P E, Palmer R J Jr, Rickard A H, Jakubovics N S, Chalmers N I, Diaz P I(2006). Bacterial interactions and successions during plaque development. Periodontol 2000, 42: 47–79
[64]
Krishnamurthy A, McGrath J, Cripps A W, Kyd J M (2009). The incidence of Streptococcus pneumoniae otitis media is affected by the polymicrobial environment particularly Moraxella catarrhalis in a mouse nasal colonisation model. Microbes Infect, 11(5): 545–553
[65]
Lambiase A, Catania M R, Del Pezzo M, Rossano F, Terlizzi V, Sepe A, Raia V (2011). Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis,
CrossRef Pubmed Google scholar
[66]
Lanza D C, Kennedy D W(1997). Adult rhinosinusitis defined. Otolaryngol Head Neck Surg, 117(Suppl 3): 1–7
[67]
Lattar S M, Tuchscherr L P, Caccuri R L, Centron D, Becker K, Alonso C A, Barberis C, Miranda G, Buzzola F R, von Eiff C, Sordelli D O(2009). Capsule expression and genotypic differences among Staphylococcus aureus isolates from patients with chronic or acute osteomyelitis. Infect Immun, 77(5): 1968–1975
[68]
Lee B, Haagensen J A, Ciofu O, Andersen J B, Hoiby N, Molin S(2005). Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol, 43(10): 5247–5255
[69]
Leid J G, Costerton J W, Shirtliff M E, Gilmore M S, Engelbert M (2002). Immunology of Staphylococcal biofilm infections in the eye: new tools to study biofilm endophthalmitis. DNA Cell Biol, 21(5-6): 405–413
CrossRef Pubmed Google scholar
[70]
Leid J G, Kerr M, Selgado C, Johnson C, Moreno G, Smith A, Shirtliff M E, O'Toole G A,Cope E K(2009). Flagellar-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host derived lactoferrin. Infect Immun, 77(10): 4559–4566
CrossRef Google scholar
[71]
Leid J G, Willson C J, Shirtliff M E, Hassett D J, Parsek M R,Jeffers A K(2005). The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol, 175(11): 7512–7518
[72]
Li J, Helmerhorst E J, Leone C W, Troxler R F, Yaskell T, Haffajee A D, Socransky S S,Oppenheim F G(2004). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol, 97(6): 1311–1318
[73]
Li M, Villaruz A E, Vadyvaloo V, Sturdevant D E,Otto M (2008). AI-2-dependent gene regulation in Staphylococcus epidermidis . BMC Microbiol, 8: 4
[74]
Ly N,McCaig L F(2002). National Hospital Ambulatory Medical Care Survey: 2000 outpatient department summary. Adv Data, (327): 1–27
[75]
Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S(2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett, 255(1): 115–120
[76]
Moore J E, Reid A, Millar B C, Jiru X, Mccaughan J, Goldsmith C E, Collins J, Murphy P G, Elborn J S (2002). Pandoraea apista isolated from a patient with cystic fibrosis: problems associated with laboratory identification. Br J Biomed Sci, 59(3): 164–166
Pubmed
[77]
Nadel D M, Lanza D C, Kennedy D W (1999). Endoscopically guided sinus cultures in normal subjects. Am J Rhinol, 13(2): 87–90
CrossRef Pubmed Google scholar
[78]
Nyvad B, Kilian M (1987). Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res, 95(5): 369–380
Pubmed
[79]
Palmer R J Jr, Gordon S M, Cisar J O, Kolenbrander P E (2003). Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol, 185(11): 3400–3409
CrossRef Pubmed Google scholar
[80]
Palmer R J Jr, Kazmerzak K, Hansen M C, Kolenbrander P E (2001). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun, 69(9): 5794–5804
CrossRef Pubmed Google scholar
[81]
Park J E, Yung R, Stefanowicz D, Shumansky K, Akhabir L, Durie P R, Corey M, Zielenski J, Dorfman R, Daley D, Sandford A J(2011). Cystic fibrosis modifier genes related to Pseudomonas aeruginosa infection. Genes Immun,
CrossRef Google scholar
[82]
Periasamy S, Kolenbrander P E (2009). Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol, 191(22): 6804–6411
[83]
Perloff J R, Palmer J N (2004). Evidence of bacterial biofilms on frontal recess stents in patients with chronic rhinosinusitis. Am J Rhinol, 18(6): 377–380
Pubmed
[84]
Peters B M, Jabra-Rizk M A, Scheper M A, Leid J G, Costerton J W, Shirtliff M E(2010). Microbial interactions and differential protein expre ssion in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol, 59(3): 493–503
[85]
Prince A A, Steiger J D, Khalid A N, Dogrhamji L, Reger C, Eau Claire S, Chiu A G, Kennedy D W, Palmer J N, Cohen N A (2008). Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol, 22(3): 239–245
CrossRef Pubmed Google scholar
[86]
Proctor R A, Von Eiff C, Kahl B C, Becker K, McNamara P, Herrmann M,Peters G(2006). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol, 4(4): 295–305
[87]
Ramsey M M, Whiteley M(2009). Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A, 106(5): 1578–1583
[88]
Rickard A H, Palmer R J Jr, Blehert D S, Campagna S R, Semmelhack M F, Egland P G, Bassler B L,Kolenbrander P E(2006). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol, 60(6): 1446–1456
[89]
Roberts M E, Stewart P S (2004). Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother, 48(1): 48–52
CrossRef Pubmed Google scholar
[90]
Rolauffs B, Bernhardt T M, von Eiff C, Hart M L, Bettin D (2002). Osteopetrosis, femoral fracture, and chronic osteomyelitis caused by Staphylococcus aureus small colony variants (SCV) treated by girdlestone resection—6-year follow-up. Arch Orthop Trauma Surg, 122(9-10): 547–550
CrossRef Pubmed Google scholar
[91]
Romano J D,Kolter R(2005). Pseudomonas-Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J Bacteriol, 187(3): 940–948
[92]
Ryan R P,Dow J M(2008). Diffusible signals and interspecies communication in bacteria. Microbiology, 154(7): 1845–1858
[93]
Sanderson A R, Leid J G, Hunsaker D(2006). Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope, 116(7): 1121–1126
[94]
Schauder S, Shokat K, Surette M G, Bassler B L(2001). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol, 41(2): 463–476
[95]
Shirtliff M E, Peters B M, Jabra-Rizk M A(2009). Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett, 299(1): 1–8
[96]
Soni K A, Lu L, Jesudhasan P R, Hume M E,Pillai S D(2008). Influence of autoinducer-2 (AI-2) and beef sample extracts on E. coli O157:H7 survival and gene expression of virulence genes yadK and hhA. J Food Sci, 73(3): M135–M139
[97]
Soni K, Jesudhasan P, Cepeda M, Williams B, Hume M, Russell W K, Jayaraman A, Pillai S D (2007). Proteomic analysis to identify the role of LuxS/AI-2 mediated protein expression in Escherichia coli O157:H7. Foodborne Pathog Dis, 4(4): 463–471
CrossRef Pubmed Google scholar
[98]
Stelzmueller I, Biebl M, Wiesmayr S, Eller M, Hoeller E, Fille M, Weiss G, Lass-Floerl C, Bonatti H(2006). Ralstonia pickettii —innocent bystander or a potential threat? Clin Microbiol Infect, 12(2): 99–101
[99]
Stephenson M F, Mfuna L, Dowd S E, Wolcott R D, Barbeau J, Poisson M, James G, Desrosiers M (2010). Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg, 39(2): 182–187
Pubmed
[100]
Stone A, Saiman L(2007). Update on the epidemiology and management of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, in patients with cystic fibrosis. Curr Opin Pulm Med, 13(6): 515–521
[101]
Surette M G, Miller M B, Bassler B L (1999). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA, 96(4): 1639–1644
CrossRef Pubmed Google scholar
[102]
Swem L R, Swem D L, O’Loughlin C T, Gatmaitan R, Zhao B, Ulrich S M, Bassler B L(2009). A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell, 35(2): 143–153
[103]
Taga M E, Semmelhack J L, Bassler B L(2001). The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol, 42(3): 777–793
[104]
Tribble G D, Lamont G J, Progulske-Fox A, Lamont R J(2007). Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J Bacteriol, 189(17): 6382–6388
[105]
Ulrich L E,Zhulin I B(2007). MiST: a microbial signal transduction database. Nucleic Acids Res, 35(Database issue): D386–D390
[106]
Waters C M, Bassler B L (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 21(1): 319–346
CrossRef Pubmed Google scholar
[107]
Weimer K E, Armbruster C E, Juneau R A, Hong W, Pang B, Swords W E (2010). Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease. J Infect Dis, 202(7): 1068–1075
CrossRef Pubmed Google scholar
[108]
Wellinghausen N, Essig A, Sommerburg O (2005). Inquilinus limosus in patients with cystic fibrosis, Germany. Emerg Infect Dis, 11(3): 457–459
Pubmed
[109]
Wolcott R, Dowd S(2011). The role of biofilms: are we hitting the right target? Plast Reconstr Surg, 127 (Suppl 1): 28–35
[110]
Xavier K B,Bassler B L(2005). Interference with AI-2-mediated bacterial cell-cell communication. Nature, 437(7059): 750–753
[111]
Xu K D, Stewart P S, Xia F, Huang C T, McFeters G A (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol, 64(10): 4035–4039
Pubmed
[112]
Zhao L, Xue T, Shang F, Sun H,Sun B(2010). Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun, 78(8): 3506–3815

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(250 KB)

Accesses

Citations

Detail

Sections
Recommended

/