Metabolic regulation by salt inducible kinases

Rebecca BERDEAUX

Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 231 -241.

PDF (417KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 231 -241. DOI: 10.1007/s11515-011-1148-0
REVIEW
REVIEW

Metabolic regulation by salt inducible kinases

Author information +
History +
PDF (417KB)

Abstract

In fasting mammals, the liver is the primary source of glucose production for maintenance of normoglycemia. In this setting, circulating peptide hormones and catecholamines cause hepatic glucose output by stimulating glycogen breakdown as well as de novo glucose production through gluconeogenesis. Fasting gluconeogenesis is regulated by a complex transcriptional cascade culminating in elevated expression of hepatic enzymes that promote gluconeogenesis and glucose export to the blood. The cAMP response element binding protein CREB and its co-activator CRTC2 play crucial roles in signal-dependent transcriptional regulation of gluconeogenesis. Recent work has identified a family of serine/threonine kinases, the salt inducible kinases (SIKs), which are subject to hormonal control and constrain gluconeogenic and lipogenic gene expression in liver. As normal regulation of gluconeogenesis and lipogenesis is disrupted in diabetic states, SIK kinases are poised to serve as therapeutic targets to modulate metabolic disturbances in diabetic patients. The purpose of this review is to 1) describe the identification of CRTCs CREB co-activators and their regulation by SIKs, 2) discuss recent progress toward understanding regulation and function of SIKs in metabolism and 3) examine the potential clinical impact of therapeutics that target SIK kinase function.

Keywords

salt inducible kinases (SIKs) / cAMP response element binding protein (CREB) / CRTC / gluconeogenesis / lipogenesis / type 2 diabetes / transcription

Cite this article

Download citation ▾
Rebecca BERDEAUX. Metabolic regulation by salt inducible kinases. Front. Biol., 2011, 6(3): 231-241 DOI:10.1007/s11515-011-1148-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altarejos J Y, Goebel N, Conkright M D, Inoue H, Xie J, Arias C M, Sawchenko P E, Montminy M (2008). The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med, 14(10): 1112–1117

[2]

Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151

[3]

Argaud D, Zhang Q, Pan W, Maitra S, Pilkis S J, Lange A J (1996). Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5′-flanking sequence. Diabetes, 45(11): 1563–1571

[4]

Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton G D, Montminy M (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med, 13(5): 597–603

[5]

Bonni A, Ginty D D, Dudek H, Greenberg M E (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci, 6(2): 168–183

[6]

Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010). Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest, 120(12): 4316–4331

[7]

Bright N J, Thornton C, Carling D (2009). The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf), 196(1): 15–26

[8]

Brindle P, Nakajima T, Montminy M (1995). Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc Natl Acad Sci U S A, 92(23): 10521–10525

[9]

Cheng H, Liu P, Wang Z C, Zou L, Santiago S, Garbitt V, Gjoerup O V, Iglehart J D, Miron A, Richardson A L, Hahn W C, Zhao J J (2009). SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal, 2(80): ra35

[10]

Cheng J, Uchida M, Zhang W, Grafe M R, Herson P S, Hurn P D (2011). Role of salt-induced kinase 1 in androgen neuroprotection against cerebral ischemia. J Cereb Blood Flow Metab, 31(1): 339–350

[11]

Choi S, Kim W, Chung J (2011). Drosophila salt-inducible kinase (SIK) regulates starvation resistance through cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). J Biol Chem, 286(4): 2658–2664

[12]

Conkright M D, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch J B, Montminy M (2003). TORCs: transducers of regulated CREB activity. Mol Cell, 12(2): 413–423

[13]

Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M (2008). Hepatic glucose sensing via the CREB coactivator CRTC2. Science, 319(5868): 1402–1405

[14]

Dentin R, Liu Y, Koo S H, Hedrick S, Vargas T, Heredia J, Yates J 3rd, Montminy M (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature, 449(7160): 366–369

[15]

Dentin R, Pégorier J P, Benhamed F, Foufelle F, Ferré P, Fauveau V, Magnuson M A, Girard J, Postic C (2004). Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem, 279(19): 20314–20326

[16]

Doi J, Takemori H, Lin X Z, Horike N, Katoh Y, Okamoto M (2002). Salt-inducible kinase represses cAMP-dependent protein kinase-mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain. J Biol Chem, 277(18): 15629–15637

[17]

Du J, Chen Q, Takemori H, Xu H (2008). SIK2 can be activated by deprivation of nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver Spring), 16(3): 531–538

[18]

Erion D M, Ignatova I D, Yonemitsu S, Nagai Y, Chatterjee P, Weismann D, Hsiao J J, Zhang D, Iwasaki T, Stark R, Flannery C, Kahn M, Carmean C M, Yu X X, Murray S F, Bhanot S, Monia B P, Cline G W, Samuel V T, Shulman G I (2009). Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab, 10(6): 499–506

[19]

Feldman J D, Vician L, Crispino M, Hoe W, Baudry M, Herschman H R (2000). The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem, 74(6): 2227–2238

[20]

Fisch T M, Prywes R, Roeder R G (1987). c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore. Mol Cell Biol, 7(10): 3490–3502

[21]

Hardie D G (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci, 117(Pt 23): 5479–5487

[22]

Hawley S A, Pan D A, Mustard K J, Ross L, Bain J, Edelman A M, Frenguelli B G, Hardie D G (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab, 2(1): 9–19

[23]

Hawley S A, Selbert M A, Goldstein E G, Edelman A M, Carling D, Hardie D G (1995). 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem, 270(45): 27186–27191

[24]

He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain M A, Radovick S, Wondisford F E (2009). Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 137(4): 635–646

[25]

Herzig S, Long F, Jhala U S, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 413(6852): 179–183

[26]

Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010). Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res, 23(6): 809–819

[27]

Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun X J, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003). Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem, 278(20): 18440–18447

[28]

Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham J M, Orth A P, Miraglia L, Meltzer J, Garza D, Chirn G W, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton F P, Zhu J, Song C, Labow M A (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A, 100(21): 12147–12152

[29]

Jakobsen S N, Hardie D G, Morrice N, Tornqvist H E (2001). 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem, 276(50): 46912–46916

[30]

Jaleel M, Villa F, Deak M, Toth R, Prescott A R, Van Aalten D M, Alessi D R (2006). The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J, 394(Pt 3): 545–555

[31]

Kajimura S, Seale P, Spiegelman B M (2010). Transcriptional control of brown fat development. Cell Metab, 11(4): 257–262

[32]

Katoh Y, Takemori H, Doi J, Okamoto M (2002). Identification of the nuclear localization domain of salt-inducible kinase. Endocr Res, 28(4): 315–318

[33]

Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004a). Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol, 217(1-2): 109–112

[34]

Katoh Y, Takemori H, Lin X Z, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, Witters L A, Nakamura H, Okamoto M (2006). Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J, 273(12): 2730–2748

[35]

Katoh Y, Takemori H, Min L, Muraoka M, Doi J, Horike N, Okamoto M (2004b). Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. Eur J Biochem, 271(21): 4307–4319

[36]

Koo S H, Flechner L, Qi L, Zhang X, Screaton R A, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 437(7062): 1109–1111

[37]

Kozhemyakina E, Cohen T, Yao T P, Lassar A B (2009). Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol, 29(21): 5751–5762

[38]

Lanjuin A, Sengupta P (2002). Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase. Neuron, 33(3): 369–381

[39]

Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner K H (2009). CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab, 10(1): 55–62

[40]

Lerner R G, Depatie C, Rutter G A, Screaton R A, Balthasar N (2009). A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep, 10(10): 1175–1181

[41]

Lin X, Takemori H, Katoh Y, Doi J, Horike N, Makino A, Nonaka Y, Okamoto M (2001). Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol, 15(8): 1264–1276

[42]

Liu J S, Park E A, Gurney A L, Roesler W J, Hanson R W (1991). Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J Biol Chem, 266(28): 19095–19102

[43]

Lizcano J M, Göransson O, Toth R, Deak M, Morrice N A, Boudeau J, Hawley S A, Udd L, Mäkelä T P, Hardie D G, Alessi D R (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J, 23(4): 833–843

[44]

Magnusson I, Rothman D L, Katz L D, Shulman R G, Shulman G I (1992). Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest, 90(4): 1323–1327

[45]

Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609

[46]

Mayr B M, Canettieri G, Montminy M R (2001). Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A, 98(19): 10936–10941

[47]

Moller D E (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 414(6865): 821–827

[48]

Momcilovic M, Hong S P, Carlson M (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem, 281(35): 25336–25343

[49]

Muraoka M, Fukushima A, Viengchareun S, Lombès M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009). Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab, 296(6): E1430–E1439

[50]

Okamoto M, Takemori H, Katoh Y (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab, 15(1): 21–26

[51]

Raghow R, Yellaturu C, Deng X, Park E A, Elam M B (2008). SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab, 19(2): 65–73

[52]

Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates J R 3rd, Montminy M (2007). Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J, 26(12): 2880–2889

[53]

Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, Cobellis G (2010). Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One, 5(2): e9029

[54]

Ruiz J C, Conlon F L, Robertson E J (1994). Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech Dev, 48(3): 153–164

[55]

Saberi M, Bjelica D, Schenk S, Imamura T, Bandyopadhyay G, Li P, Vargeese C, Wang W, Bowman K, Zhang Y, Polisky B, Olefsky J M (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am J Physiol Endocrinol Metab, 297(5): e1137–e1146

[56]

Sakamoto K, McCarthy A, Smith D, Green K A, Grahame Hardie D, Ashworth A, Alessi D R (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J, 24(10): 1810–1820

[57]

Salway J G (2004). Metabolism at a Glance. 3rd Edition, MA: Blackwell Publishing, Ltd.

[58]

Samuel V T, Beddow S A, Iwasaki T, Zhang X M, Chu X, Still C D, Gerhard G S, Shulman G I (2009). Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A, 106(29): 12121–12126

[59]

Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011). SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron, 69(1): 106–119

[60]

Screaton R A, Conkright M D, Katoh Y, Best J L, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates J R 3rd, Takemori H, Okamoto M, Montminy M (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell, 119(1): 61–74

[61]

Shaw R J, Kosmatka M, Bardeesy N, Hurley R L, Witters L A, DePinho R A, Cantley L C (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A, 101(10): 3329–3335

[62]

Shaw R J, Lamia K A, Vasquez D, Koo S H, Bardeesy N, Depinho R A, Montminy M, Cantley L C (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310(5754): 1642–1646

[63]

Song Y, Altarejos J, Goodarzi M O, Inoue H, Guo X, Berdeaux R, Kim J H, Goode J, Igata M, Paz J C, Hogan M F, Singh P K, Goebel N, Vera L, Miller N, Cui J, Jones M R, Chen Y D, Taylor K D, Hsueh W A, Rotter J I, Montminy M, the CHARGE Consortium, the GIANT Consortium (2010). CRTC3 links catecholamine signalling to energy balance. Nature, 468(7326): 933–939

[64]

Takemori H, Katoh Y, Horike N, Doi J, Okamoto M (2002). ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J Biol Chem, 277(44): 42334–42343

[65]

Takemori H, Katoh Hashimoto Y, Nakae J, Olson E N, Okamoto M (2009). Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Endocr J, 56(1): 121–130

[66]

van der Linden A M, Nolan K M, Sengupta P (2007). KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J, 26(2): 358–370

[67]

Wang B, Goode J, Best J, Meltzer J, Schilman P E, Chen J, Garza D, Thomas J B, Montminy M (2008). The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab, 7(5): 434–444

[68]

Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, Liu Y, Hedrick S, Vera L, Montminy M (2010). Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A, 107(7): 3087–3092

[69]

Wang Z, Takemori H, Halder S K, Nonaka Y, Okamoto M (1999). Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett, 453(1-2): 135–139

[70]

Witczak C A, Fujii N, Hirshman M F, Goodyear L J (2007). Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes, 56(5): 1403–1409

[71]

Xie M, Zhang D, Dyck J R, Li Y, Zhang H, Morishima M, Mann D L, Taffet G E, Baldini A, Khoury D S, Schneider M D (2006). A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A, 103(46): 17378–17383

[72]

Yamashita H, Takenoshita M, Sakurai M, Bruick R K, Henzel W J, Shillinglaw W, Arnot D, Uyeda K (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A, 98(16): 9116–9121

[73]

Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413(6852): 131–138

[74]

Yoon Y S, Seo W Y, Lee M W, Kim S T, Koo S H (2009). Salt-inducible kinase regulates hepatic lipogenesis by controlling SREBP-1c phosphorylation. J Biol Chem, 284(16): 10446–10452

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (417KB)

2761

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/