Metabolic regulation by salt inducible kinases

Rebecca BERDEAUX

PDF(417 KB)
PDF(417 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 231-241. DOI: 10.1007/s11515-011-1148-0
REVIEW
REVIEW

Metabolic regulation by salt inducible kinases

Author information +
History +

Abstract

In fasting mammals, the liver is the primary source of glucose production for maintenance of normoglycemia. In this setting, circulating peptide hormones and catecholamines cause hepatic glucose output by stimulating glycogen breakdown as well as de novo glucose production through gluconeogenesis. Fasting gluconeogenesis is regulated by a complex transcriptional cascade culminating in elevated expression of hepatic enzymes that promote gluconeogenesis and glucose export to the blood. The cAMP response element binding protein CREB and its co-activator CRTC2 play crucial roles in signal-dependent transcriptional regulation of gluconeogenesis. Recent work has identified a family of serine/threonine kinases, the salt inducible kinases (SIKs), which are subject to hormonal control and constrain gluconeogenic and lipogenic gene expression in liver. As normal regulation of gluconeogenesis and lipogenesis is disrupted in diabetic states, SIK kinases are poised to serve as therapeutic targets to modulate metabolic disturbances in diabetic patients. The purpose of this review is to 1) describe the identification of CRTCs CREB co-activators and their regulation by SIKs, 2) discuss recent progress toward understanding regulation and function of SIKs in metabolism and 3) examine the potential clinical impact of therapeutics that target SIK kinase function.

Keywords

salt inducible kinases (SIKs) / cAMP response element binding protein (CREB) / CRTC / gluconeogenesis / lipogenesis / type 2 diabetes / transcription

Cite this article

Download citation ▾
Rebecca BERDEAUX. Metabolic regulation by salt inducible kinases. Front Biol, 2011, 6(3): 231‒241 https://doi.org/10.1007/s11515-011-1148-0

References

[1]
Altarejos J Y, Goebel N, Conkright M D, Inoue H, Xie J, Arias C M, Sawchenko P E, Montminy M (2008). The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med, 14(10): 1112–1117
CrossRef Pubmed Google scholar
[2]
Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151
CrossRef Pubmed Google scholar
[3]
Argaud D, Zhang Q, Pan W, Maitra S, Pilkis S J, Lange A J (1996). Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5′-flanking sequence. Diabetes, 45(11): 1563–1571
CrossRef Pubmed Google scholar
[4]
Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton G D, Montminy M (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med, 13(5): 597–603
CrossRef Pubmed Google scholar
[5]
Bonni A, Ginty D D, Dudek H, Greenberg M E (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci, 6(2): 168–183
CrossRef Pubmed Google scholar
[6]
Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010). Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest, 120(12): 4316–4331
CrossRef Pubmed Google scholar
[7]
Bright N J, Thornton C, Carling D (2009). The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf), 196(1): 15–26
CrossRef Pubmed Google scholar
[8]
Brindle P, Nakajima T, Montminy M (1995). Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc Natl Acad Sci U S A, 92(23): 10521–10525
CrossRef Pubmed Google scholar
[9]
Cheng H, Liu P, Wang Z C, Zou L, Santiago S, Garbitt V, Gjoerup O V, Iglehart J D, Miron A, Richardson A L, Hahn W C, Zhao J J (2009). SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal, 2(80): ra35
CrossRef Pubmed Google scholar
[10]
Cheng J, Uchida M, Zhang W, Grafe M R, Herson P S, Hurn P D (2011). Role of salt-induced kinase 1 in androgen neuroprotection against cerebral ischemia. J Cereb Blood Flow Metab, 31(1): 339–350
CrossRef Pubmed Google scholar
[11]
Choi S, Kim W, Chung J (2011). Drosophila salt-inducible kinase (SIK) regulates starvation resistance through cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). J Biol Chem, 286(4): 2658–2664
CrossRef Pubmed Google scholar
[12]
Conkright M D, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch J B, Montminy M (2003). TORCs: transducers of regulated CREB activity. Mol Cell, 12(2): 413–423
CrossRef Pubmed Google scholar
[13]
Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M (2008). Hepatic glucose sensing via the CREB coactivator CRTC2. Science, 319(5868): 1402–1405
CrossRef Pubmed Google scholar
[14]
Dentin R, Liu Y, Koo S H, Hedrick S, Vargas T, Heredia J, Yates J 3rd, Montminy M (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature, 449(7160): 366–369
CrossRef Pubmed Google scholar
[15]
Dentin R, Pégorier J P, Benhamed F, Foufelle F, Ferré P, Fauveau V, Magnuson M A, Girard J, Postic C (2004). Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem, 279(19): 20314–20326
CrossRef Pubmed Google scholar
[16]
Doi J, Takemori H, Lin X Z, Horike N, Katoh Y, Okamoto M (2002). Salt-inducible kinase represses cAMP-dependent protein kinase-mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain. J Biol Chem, 277(18): 15629–15637
CrossRef Pubmed Google scholar
[17]
Du J, Chen Q, Takemori H, Xu H (2008). SIK2 can be activated by deprivation of nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver Spring), 16(3): 531–538
CrossRef Pubmed Google scholar
[18]
Erion D M, Ignatova I D, Yonemitsu S, Nagai Y, Chatterjee P, Weismann D, Hsiao J J, Zhang D, Iwasaki T, Stark R, Flannery C, Kahn M, Carmean C M, Yu X X, Murray S F, Bhanot S, Monia B P, Cline G W, Samuel V T, Shulman G I (2009). Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab, 10(6): 499–506
CrossRef Pubmed Google scholar
[19]
Feldman J D, Vician L, Crispino M, Hoe W, Baudry M, Herschman H R (2000). The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem, 74(6): 2227–2238
CrossRef Pubmed Google scholar
[20]
Fisch T M, Prywes R, Roeder R G (1987). c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore. Mol Cell Biol, 7(10): 3490–3502
Pubmed
[21]
Hardie D G (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci, 117(Pt 23): 5479–5487
CrossRef Pubmed Google scholar
[22]
Hawley S A, Pan D A, Mustard K J, Ross L, Bain J, Edelman A M, Frenguelli B G, Hardie D G (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab, 2(1): 9–19
CrossRef Pubmed Google scholar
[23]
Hawley S A, Selbert M A, Goldstein E G, Edelman A M, Carling D, Hardie D G (1995). 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem, 270(45): 27186–27191
CrossRef Pubmed Google scholar
[24]
He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain M A, Radovick S, Wondisford F E (2009). Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 137(4): 635–646
CrossRef Pubmed Google scholar
[25]
Herzig S, Long F, Jhala U S, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 413(6852): 179–183
CrossRef Pubmed Google scholar
[26]
Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010). Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res, 23(6): 809–819
CrossRef Pubmed Google scholar
[27]
Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun X J, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003). Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem, 278(20): 18440–18447
CrossRef Pubmed Google scholar
[28]
Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham J M, Orth A P, Miraglia L, Meltzer J, Garza D, Chirn G W, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton F P, Zhu J, Song C, Labow M A (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A, 100(21): 12147–12152
CrossRef Pubmed Google scholar
[29]
Jakobsen S N, Hardie D G, Morrice N, Tornqvist H E (2001). 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem, 276(50): 46912–46916
CrossRef Pubmed Google scholar
[30]
Jaleel M, Villa F, Deak M, Toth R, Prescott A R, Van Aalten D M, Alessi D R (2006). The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J, 394(Pt 3): 545–555
CrossRef Pubmed Google scholar
[31]
Kajimura S, Seale P, Spiegelman B M (2010). Transcriptional control of brown fat development. Cell Metab, 11(4): 257–262
CrossRef Pubmed Google scholar
[32]
Katoh Y, Takemori H, Doi J, Okamoto M (2002). Identification of the nuclear localization domain of salt-inducible kinase. Endocr Res, 28(4): 315–318
CrossRef Pubmed Google scholar
[33]
Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004a). Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol, 217(1-2): 109–112
CrossRef Pubmed Google scholar
[34]
Katoh Y, Takemori H, Lin X Z, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, Witters L A, Nakamura H, Okamoto M (2006). Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J, 273(12): 2730–2748
CrossRef Pubmed Google scholar
[35]
Katoh Y, Takemori H, Min L, Muraoka M, Doi J, Horike N, Okamoto M (2004b). Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. Eur J Biochem, 271(21): 4307–4319
CrossRef Pubmed Google scholar
[36]
Koo S H, Flechner L, Qi L, Zhang X, Screaton R A, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 437(7062): 1109–1111
CrossRef Pubmed Google scholar
[37]
Kozhemyakina E, Cohen T, Yao T P, Lassar A B (2009). Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol, 29(21): 5751–5762
CrossRef Pubmed Google scholar
[38]
Lanjuin A, Sengupta P (2002). Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase. Neuron, 33(3): 369–381
CrossRef Pubmed Google scholar
[39]
Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner K H (2009). CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab, 10(1): 55–62
CrossRef Pubmed Google scholar
[40]
Lerner R G, Depatie C, Rutter G A, Screaton R A, Balthasar N (2009). A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep, 10(10): 1175–1181
CrossRef Pubmed Google scholar
[41]
Lin X, Takemori H, Katoh Y, Doi J, Horike N, Makino A, Nonaka Y, Okamoto M (2001). Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol, 15(8): 1264–1276
CrossRef Pubmed Google scholar
[42]
Liu J S, Park E A, Gurney A L, Roesler W J, Hanson R W (1991). Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J Biol Chem, 266(28): 19095–19102
Pubmed
[43]
Lizcano J M, Göransson O, Toth R, Deak M, Morrice N A, Boudeau J, Hawley S A, Udd L, Mäkelä T P, Hardie D G, Alessi D R (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J, 23(4): 833–843
CrossRef Pubmed Google scholar
[44]
Magnusson I, Rothman D L, Katz L D, Shulman R G, Shulman G I (1992). Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest, 90(4): 1323–1327
CrossRef Pubmed Google scholar
[45]
Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609
CrossRef Pubmed Google scholar
[46]
Mayr B M, Canettieri G, Montminy M R (2001). Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A, 98(19): 10936–10941
CrossRef Pubmed Google scholar
[47]
Moller D E (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 414(6865): 821–827
CrossRef Pubmed Google scholar
[48]
Momcilovic M, Hong S P, Carlson M (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem, 281(35): 25336–25343
CrossRef Pubmed Google scholar
[49]
Muraoka M, Fukushima A, Viengchareun S, Lombès M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009). Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab, 296(6): E1430–E1439
CrossRef Pubmed Google scholar
[50]
Okamoto M, Takemori H, Katoh Y (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab, 15(1): 21–26
CrossRef Pubmed Google scholar
[51]
Raghow R, Yellaturu C, Deng X, Park E A, Elam M B (2008). SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab, 19(2): 65–73
CrossRef Pubmed Google scholar
[52]
Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates J R 3rd, Montminy M (2007). Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J, 26(12): 2880–2889
CrossRef Pubmed Google scholar
[53]
Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, Cobellis G (2010). Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One, 5(2): e9029
CrossRef Pubmed Google scholar
[54]
Ruiz J C, Conlon F L, Robertson E J (1994). Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech Dev, 48(3): 153–164
CrossRef Pubmed Google scholar
[55]
Saberi M, Bjelica D, Schenk S, Imamura T, Bandyopadhyay G, Li P, Vargeese C, Wang W, Bowman K, Zhang Y, Polisky B, Olefsky J M (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am J Physiol Endocrinol Metab, 297(5): e1137–e1146
[56]
Sakamoto K, McCarthy A, Smith D, Green K A, Grahame Hardie D, Ashworth A, Alessi D R (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J, 24(10): 1810–1820
CrossRef Pubmed Google scholar
[57]
Salway J G (2004). Metabolism at a Glance. 3rd Edition, MA: Blackwell Publishing, Ltd.
[58]
Samuel V T, Beddow S A, Iwasaki T, Zhang X M, Chu X, Still C D, Gerhard G S, Shulman G I (2009). Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A, 106(29): 12121–12126
CrossRef Pubmed Google scholar
[59]
Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011). SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron, 69(1): 106–119
CrossRef Pubmed Google scholar
[60]
Screaton R A, Conkright M D, Katoh Y, Best J L, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates J R 3rd, Takemori H, Okamoto M, Montminy M (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell, 119(1): 61–74
CrossRef Pubmed Google scholar
[61]
Shaw R J, Kosmatka M, Bardeesy N, Hurley R L, Witters L A, DePinho R A, Cantley L C (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A, 101(10): 3329–3335
CrossRef Pubmed Google scholar
[62]
Shaw R J, Lamia K A, Vasquez D, Koo S H, Bardeesy N, Depinho R A, Montminy M, Cantley L C (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310(5754): 1642–1646
CrossRef Pubmed Google scholar
[63]
Song Y, Altarejos J, Goodarzi M O, Inoue H, Guo X, Berdeaux R, Kim J H, Goode J, Igata M, Paz J C, Hogan M F, Singh P K, Goebel N, Vera L, Miller N, Cui J, Jones M R, Chen Y D, Taylor K D, Hsueh W A, Rotter J I, Montminy M, the CHARGE Consortium, the GIANT Consortium (2010). CRTC3 links catecholamine signalling to energy balance. Nature, 468(7326): 933–939
CrossRef Pubmed Google scholar
[64]
Takemori H, Katoh Y, Horike N, Doi J, Okamoto M (2002). ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J Biol Chem, 277(44): 42334–42343
CrossRef Pubmed Google scholar
[65]
Takemori H, Katoh Hashimoto Y, Nakae J, Olson E N, Okamoto M (2009). Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Endocr J, 56(1): 121–130
CrossRef Pubmed Google scholar
[66]
van der Linden A M, Nolan K M, Sengupta P (2007). KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J, 26(2): 358–370
Pubmed
[67]
Wang B, Goode J, Best J, Meltzer J, Schilman P E, Chen J, Garza D, Thomas J B, Montminy M (2008). The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab, 7(5): 434–444
CrossRef Pubmed Google scholar
[68]
Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, Liu Y, Hedrick S, Vera L, Montminy M (2010). Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A, 107(7): 3087–3092
CrossRef Pubmed Google scholar
[69]
Wang Z, Takemori H, Halder S K, Nonaka Y, Okamoto M (1999). Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett, 453(1-2): 135–139
CrossRef Pubmed Google scholar
[70]
Witczak C A, Fujii N, Hirshman M F, Goodyear L J (2007). Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes, 56(5): 1403–1409
CrossRef Pubmed Google scholar
[71]
Xie M, Zhang D, Dyck J R, Li Y, Zhang H, Morishima M, Mann D L, Taffet G E, Baldini A, Khoury D S, Schneider M D (2006). A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A, 103(46): 17378–17383
CrossRef Pubmed Google scholar
[72]
Yamashita H, Takenoshita M, Sakurai M, Bruick R K, Henzel W J, Shillinglaw W, Arnot D, Uyeda K (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A, 98(16): 9116–9121
CrossRef Pubmed Google scholar
[73]
Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413(6852): 131–138
CrossRef Pubmed Google scholar
[74]
Yoon Y S, Seo W Y, Lee M W, Kim S T, Koo S H (2009). Salt-inducible kinase regulates hepatic lipogenesis by controlling SREBP-1c phosphorylation. J Biol Chem, 284(16): 10446–10452
CrossRef Pubmed Google scholar

Acknowledgments

R. Berdeaux was supported by grants from the Muscular Dystrophy Association (MDA 68640), the American Heart Association (AHA 09BGIA2261362) and the University of Texas Health Science Center, Houston. I thank Randi Stewart for critical comments on the manuscript.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(417 KB)

Accesses

Citations

Detail

Sections
Recommended

/