Systems level analysis of lipidome

Guanghou SHUI

PDF(328 KB)
PDF(328 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 183-189. DOI: 10.1007/s11515-011-1147-1
MINI-REVIEW
MINI-REVIEW

Systems level analysis of lipidome

Author information +
History +

Abstract

Lipids, once thought to be mainly for energy-storage and structural purpose, have now gained immense recognition as a class of critical metabolites with versatile functions. The diversity and complexity of the cellular lipids are the main challenge for the comprehensive analysis of a lipidome. Lipidomics, which aims at mapping all of the lipids in a cell, is expanded rapidly in recent years, mainly attributed to recent advances in mass spectrometry (MS). MS-based lipidomic approaches developed recently allow the quick profiling of hundreds of lipids in a crude lipid extract. With the aid of latest computational tools/software (chemometrics), aberrant lipid metabolites or important signaling lipid(s) could be easily identified using unbiased lipid profiling approaches. Further tandem MS (MS/MS)-based lipidomic approaches, known as targeted approaches and able to convey structural information, hold the promise for high-throughput lipidome analysis. In this review, I discussed the basic strategy for systems level analysis of lipidome in biomedical study.

Keywords

lipidomics / lipid / mass spectrometry / metabolite

Cite this article

Download citation ▾
Guanghou SHUI. Systems level analysis of lipidome. Front Biol, 2011, 6(3): 183‒189 https://doi.org/10.1007/s11515-011-1147-1

References

[1]
Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007). SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 282(42): 30845–30855
CrossRef Pubmed Google scholar
[2]
Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8): 911–917
Pubmed
[3]
Di Paolo G, Moskowitz H S, Gipson K, Wenk M R, Voronov S, Obayashi M, Flavell R, Fitzsimonds R M, Ryan T A, De Camilli P (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature, 431(7007): 415–422
CrossRef Pubmed Google scholar
[4]
Ejsing C S, Sampaio J L, Surendranath V, Duchoslav E, Ekroos K, Klemm R W, Simons K, Shevchenko A (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA, 106(7): 2136–2141
CrossRef Pubmed Google scholar
[5]
Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H Jr, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M S, White S H, Witztum J L, Dennis E A (2005). A comprehensive classification system for lipids. J Lipid Res, 46(5): 839–861
CrossRef Pubmed Google scholar
[6]
Fahy E, Subramaniam S, Murphy R C, Nishijima M, Raetz C R, Shimizu T, Spener F, van Meer G, Wakelam M J, Dennis E A (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res, 50(Suppl): S9–S14
CrossRef Pubmed Google scholar
[7]
Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926): 64–71
CrossRef Pubmed Google scholar
[8]
Fernandis A Z, Wenk M R (2009). Lipid-based biomarkers for cancer. J Chromatogr B Analyt Technol Biomed Life Sci, 877(26): 2830–2835
CrossRef Pubmed Google scholar
[9]
Folch J, Lees M, Sloane Stanley G H (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1): 497–509
Pubmed
[10]
Fuchs B, Süss R, Schiller J (2010). An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res, 49(4): 450–475
CrossRef Pubmed Google scholar
[11]
Gangoiti P, Camacho L, Arana L, Ouro A, Granado M H, Brizuela L, Casas J, Fabriás G, Abad J L, Delgado A, Gómez-Muñoz A (2010). Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res, 49(4): 316–334
CrossRef Pubmed Google scholar
[12]
Griffiths W J, Wang Y, Alvelius G, Liu S, Bodin K, Sjövall J (2006). Analysis of oxysterols by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 17(3): 341–362
CrossRef Pubmed Google scholar
[13]
Guan X L, He X, Ong W Y, Yeo W K, Shui G, Wenk M R (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J, 20(8): 1152–1161
CrossRef Pubmed Google scholar
[14]
Han X, Gross R W (1994). Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA, 91(22): 10635–10639
CrossRef Pubmed Google scholar
[15]
Han X, Gross R W (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev, 24(3): 367–412
CrossRef Pubmed Google scholar
[16]
Huang Q, Shen H M, Shui G, Wenk M R, Ong C N (2006). Emodin inhibits tumor cell adhesion through disruption of the membrane lipid Raft-associated integrin signaling pathway. Cancer Res, 66(11): 5807–5815
CrossRef Pubmed Google scholar
[17]
Jackson S N, Wang H Y, Woods A S (2005). Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem, 77(14): 4523–4527
CrossRef Pubmed Google scholar
[18]
Karas M, Hillenkamp F (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20): 2299–2301
CrossRef Pubmed Google scholar
[19]
Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G, Sjövall J, Turton J, Wang Y, Griffiths W J (2007). Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res, 48(4): 976–987
CrossRef Pubmed Google scholar
[20]
Merrill A H Jr, Sullards M C, Allegood J C, Kelly S, Wang E (2005). Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods, 36(2): 207–224
CrossRef Pubmed Google scholar
[21]
Niemelä P S, Castillo S, Sysi-Aho M, Oresic M (2009). Bioinformatics and computational methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci, 877(26): 2855–2862
CrossRef Pubmed Google scholar
[22]
Pulfer M, Murphy R C (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev, 22(5): 332–364
CrossRef Pubmed Google scholar
[23]
Raith K, Brenner C, Farwanah H, Müller G, Eder K, Neubert R H (2005). A new LC/APCI-MS method for the determination of cholesterol oxidation products in food. J Chromatogr A, 1067(1-2): 207–211
CrossRef Pubmed Google scholar
[24]
Shui G, Bendt A K, Pethe K, Dick T, Wenk M R (2007). Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res, 48(9): 1976–1984
CrossRef Pubmed Google scholar
[25]
Shui G, Guan X L, Gopalakrishnan P, Xue Y, Goh J S, Yang H, Wenk M R (2010a). Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS One, 5(8): e11956
CrossRef Pubmed Google scholar
[26]
Shui G, Guan X L, Low C P, Chua G H, Goh J S, Yang H, Wenk M R (2010b). Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol Biosyst, 6(6): 1008–1017
CrossRef Pubmed Google scholar
[27]
Stubiger G, Belgacem O (2007). Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem, 79(8): 3206–3213
CrossRef Pubmed Google scholar
[28]
Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005). Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 823(1): 26–36
CrossRef Pubmed Google scholar
[29]
Taguchi R, Ishikawa M (2010). Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A, 1217(25): 4229–4239
CrossRef Pubmed Google scholar
[30]
Wenk M R (2005). The emerging field of lipidomics. Nat Rev Drug Discov, 4(7): 594–610
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(328 KB)

Accesses

Citations

Detail

Sections
Recommended

/