Systems level analysis of lipidome
Guanghou SHUI
Systems level analysis of lipidome
Lipids, once thought to be mainly for energy-storage and structural purpose, have now gained immense recognition as a class of critical metabolites with versatile functions. The diversity and complexity of the cellular lipids are the main challenge for the comprehensive analysis of a lipidome. Lipidomics, which aims at mapping all of the lipids in a cell, is expanded rapidly in recent years, mainly attributed to recent advances in mass spectrometry (MS). MS-based lipidomic approaches developed recently allow the quick profiling of hundreds of lipids in a crude lipid extract. With the aid of latest computational tools/software (chemometrics), aberrant lipid metabolites or important signaling lipid(s) could be easily identified using unbiased lipid profiling approaches. Further tandem MS (MS/MS)-based lipidomic approaches, known as targeted approaches and able to convey structural information, hold the promise for high-throughput lipidome analysis. In this review, I discussed the basic strategy for systems level analysis of lipidome in biomedical study.
lipidomics / lipid / mass spectrometry / metabolite
[1] |
Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007). SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 282(42): 30845–30855
CrossRef
Pubmed
Google scholar
|
[2] |
Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8): 911–917
Pubmed
|
[3] |
Di Paolo G, Moskowitz H S, Gipson K, Wenk M R, Voronov S, Obayashi M, Flavell R, Fitzsimonds R M, Ryan T A, De Camilli P (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature, 431(7007): 415–422
CrossRef
Pubmed
Google scholar
|
[4] |
Ejsing C S, Sampaio J L, Surendranath V, Duchoslav E, Ekroos K, Klemm R W, Simons K, Shevchenko A (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA, 106(7): 2136–2141
CrossRef
Pubmed
Google scholar
|
[5] |
Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H Jr, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M S, White S H, Witztum J L, Dennis E A (2005). A comprehensive classification system for lipids. J Lipid Res, 46(5): 839–861
CrossRef
Pubmed
Google scholar
|
[6] |
Fahy E, Subramaniam S, Murphy R C, Nishijima M, Raetz C R, Shimizu T, Spener F, van Meer G, Wakelam M J, Dennis E A (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res, 50(Suppl): S9–S14
CrossRef
Pubmed
Google scholar
|
[7] |
Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926): 64–71
CrossRef
Pubmed
Google scholar
|
[8] |
Fernandis A Z, Wenk M R (2009). Lipid-based biomarkers for cancer. J Chromatogr B Analyt Technol Biomed Life Sci, 877(26): 2830–2835
CrossRef
Pubmed
Google scholar
|
[9] |
Folch J, Lees M, Sloane Stanley G H (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1): 497–509
Pubmed
|
[10] |
Fuchs B, Süss R, Schiller J (2010). An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res, 49(4): 450–475
CrossRef
Pubmed
Google scholar
|
[11] |
Gangoiti P, Camacho L, Arana L, Ouro A, Granado M H, Brizuela L, Casas J, Fabriás G, Abad J L, Delgado A, Gómez-Muñoz A (2010). Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res, 49(4): 316–334
CrossRef
Pubmed
Google scholar
|
[12] |
Griffiths W J, Wang Y, Alvelius G, Liu S, Bodin K, Sjövall J (2006). Analysis of oxysterols by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 17(3): 341–362
CrossRef
Pubmed
Google scholar
|
[13] |
Guan X L, He X, Ong W Y, Yeo W K, Shui G, Wenk M R (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J, 20(8): 1152–1161
CrossRef
Pubmed
Google scholar
|
[14] |
Han X, Gross R W (1994). Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA, 91(22): 10635–10639
CrossRef
Pubmed
Google scholar
|
[15] |
Han X, Gross R W (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev, 24(3): 367–412
CrossRef
Pubmed
Google scholar
|
[16] |
Huang Q, Shen H M, Shui G, Wenk M R, Ong C N (2006). Emodin inhibits tumor cell adhesion through disruption of the membrane lipid Raft-associated integrin signaling pathway. Cancer Res, 66(11): 5807–5815
CrossRef
Pubmed
Google scholar
|
[17] |
Jackson S N, Wang H Y, Woods A S (2005). Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem, 77(14): 4523–4527
CrossRef
Pubmed
Google scholar
|
[18] |
Karas M, Hillenkamp F (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20): 2299–2301
CrossRef
Pubmed
Google scholar
|
[19] |
Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G, Sjövall J, Turton J, Wang Y, Griffiths W J (2007). Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res, 48(4): 976–987
CrossRef
Pubmed
Google scholar
|
[20] |
Merrill A H Jr, Sullards M C, Allegood J C, Kelly S, Wang E (2005). Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods, 36(2): 207–224
CrossRef
Pubmed
Google scholar
|
[21] |
Niemelä P S, Castillo S, Sysi-Aho M, Oresic M (2009). Bioinformatics and computational methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci, 877(26): 2855–2862
CrossRef
Pubmed
Google scholar
|
[22] |
Pulfer M, Murphy R C (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev, 22(5): 332–364
CrossRef
Pubmed
Google scholar
|
[23] |
Raith K, Brenner C, Farwanah H, Müller G, Eder K, Neubert R H (2005). A new LC/APCI-MS method for the determination of cholesterol oxidation products in food. J Chromatogr A, 1067(1-2): 207–211
CrossRef
Pubmed
Google scholar
|
[24] |
Shui G, Bendt A K, Pethe K, Dick T, Wenk M R (2007). Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res, 48(9): 1976–1984
CrossRef
Pubmed
Google scholar
|
[25] |
Shui G, Guan X L, Gopalakrishnan P, Xue Y, Goh J S, Yang H, Wenk M R (2010a). Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS One, 5(8): e11956
CrossRef
Pubmed
Google scholar
|
[26] |
Shui G, Guan X L, Low C P, Chua G H, Goh J S, Yang H, Wenk M R (2010b). Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol Biosyst, 6(6): 1008–1017
CrossRef
Pubmed
Google scholar
|
[27] |
Stubiger G, Belgacem O (2007). Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem, 79(8): 3206–3213
CrossRef
Pubmed
Google scholar
|
[28] |
Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005). Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 823(1): 26–36
CrossRef
Pubmed
Google scholar
|
[29] |
Taguchi R, Ishikawa M (2010). Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A, 1217(25): 4229–4239
CrossRef
Pubmed
Google scholar
|
[30] |
Wenk M R (2005). The emerging field of lipidomics. Nat Rev Drug Discov, 4(7): 594–610
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |