Sterol-binding proteins and endosomal cholesterol transport

Ximing DU, Hongyuan YANG

PDF(253 KB)
PDF(253 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 190-196. DOI: 10.1007/s11515-011-1143-5
REVIEW
REVIEW

Sterol-binding proteins and endosomal cholesterol transport

Author information +
History +

Abstract

Endosomal compartments sort and deliver exogenous lipoprotein-derived cholesterol to the endoplasmic reticulum for regulating cellular cholesterol homeostasis. A large number of studies have focused on the removal of endosomal cholesterol, since its accumulation leads to devastating human diseases. Recent studies suggest that cytoplasmic sterol-binding proteins may be involved in endosomal cholesterol transport. In particular, endosome/lysosome-localized or-associated cholesterol-binding proteins may serve as key mediators of cholesterol removal in a non-vesicular manner. Further characterization of these cholesterol-binding proteins will shed light on the molecular mechanisms that regulate endosomal cholesterol sorting.

Keywords

NPC1 / NPC2 / OSBP/ORP / StAR protein / endosomal cholesterol transport

Cite this article

Download citation ▾
Ximing DU, Hongyuan YANG. Sterol-binding proteins and endosomal cholesterol transport. Front Biol, 2011, 6(3): 190‒196 https://doi.org/10.1007/s11515-011-1143-5

References

[1]
Alpy F, Stoeckel M E, Dierich A, Escola J M, Wendling C, Chenard M P, Vanier M T, Gruenberg J, Tomasetto C, Rio M C (2001). The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem, 276(6): 4261-4269
CrossRef Pubmed Google scholar
[2]
Beh C T, Cool L, Phillips J, Rine J (2001). Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics, 157(3): 1117-1140
Pubmed
[3]
Bishop N, Woodman P (2000). ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell, 11(1): 227-239
Pubmed
[4]
Brown M S, Goldstein J L (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746): 34-47
CrossRef Pubmed Google scholar
[5]
Brown M S, Goldstein J L (2009). Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res, 50(Suppl): S15-S27
CrossRef Pubmed Google scholar
[6]
Carstea E D, Morris J A, Coleman K G, Loftus S K, Zhang D, Cummings C, Gu J, Rosenfeld M A, Pavan W J, Krizman D B, Nagle J, Polymeropoulos M H, Sturley S L, Ioannou Y A, Higgins M E, Comly M, Cooney A, Brown A, Kaneski C R, Blanchette-Mackie E J, Dwyer N K, Neufeld E B, Chang T Y, Liscum L, Strauss J F 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill R R, van Diggelen O P, Elleder M, Patterson M C, Brady R O, Vanier M T, Pentchev P G, Tagle D A (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science, 277(5323): 228-231
CrossRef Pubmed Google scholar
[7]
Chang T Y, Chang C C, Ohgami N, Yamauchi Y (2006). Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol, 22(1): 129-157
CrossRef Pubmed Google scholar
[8]
Charman M, Kennedy B E, Osborne N, Karten B (2010). MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res, 51(5): 1023-1034
CrossRef Pubmed Google scholar
[9]
Davies J P, Ioannou Y A (2000). Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem, 275(32): 24367-24374
CrossRef Pubmed Google scholar
[10]
Du X, Kumar J, Ferguson C, Schulz T A, Ong Y S, Hong W, Prinz W A, Parton R G, Brown A J, Yang H (2011). A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol, 192(1): 121-135
CrossRef Pubmed Google scholar
[11]
Goldstein J L, DeBose-Boyd R A, Brown M S (2006). Protein sensors for membrane sterols. Cell, 124(1): 35-46
CrossRef Pubmed Google scholar
[12]
Harrison K D, Miao R Q, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa W C (2009). Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab, 10(3): 208-218
CrossRef Pubmed Google scholar
[13]
Holtta-Vuori M, Ikonen E (2006). Endosomal cholesterol traffic: vesicular and non-vesicular mechanisms meet. Biochem Soc Trans, 34(Pt 3): 392-394
CrossRef Pubmed Google scholar
[14]
Ikonen E (2008). Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol, 9(2): 125-138
CrossRef Pubmed Google scholar
[15]
Im Y J, Raychaudhuri S, Prinz W A, Hurley J H (2005). Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 437(7055): 154-158
CrossRef Pubmed Google scholar
[16]
Infante R E, Abi-Mosleh L, Radhakrishnan A, Dale J D, Brown M S, Goldstein J L (2008a). Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem, 283(2): 1052-1063
CrossRef Pubmed Google scholar
[17]
Infante R E, Radhakrishnan A, Abi-Mosleh L, Kinch L N, Wang M L, Grishin N V, Goldstein J L, Brown M S (2008b). Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem, 283(2): 1064-1075
CrossRef Pubmed Google scholar
[18]
Infante R E, Wang M L, Radhakrishnan A, Kwon H J, Brown M S, Goldstein J L (2008c). NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA, 105(40): 15287-15292
CrossRef Pubmed Google scholar
[19]
Kwon H J, Abi-Mosleh L, Wang M L, Deisenhofer J, Goldstein J L, Brown M S, Infante R E (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell, 137(7): 1213-1224
CrossRef Pubmed Google scholar
[20]
Lavigne P, Najmanivich R, Lehoux J G (2010). Mammalian StAR-related lipid transfer (START) domains with specificity for cholesterol: structural conservation and mechanism of reversible binding. Subcell Biochem, 51: 425-437
CrossRef Pubmed Google scholar
[21]
Lehto M, Laitinen S, Chinetti G, Johansson M, Ehnholm C, Staels B, Ikonen E, Olkkonen V M (2001). The OSBP-related protein family in humans. J Lipid Res, 42(8): 1203-1213
Pubmed
[22]
Lev S (2010). Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol, 11(10): 739-750
CrossRef Pubmed Google scholar
[23]
Lingwood D, Simons K (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961): 46-50
CrossRef Pubmed Google scholar
[24]
Liu B, Turley S D, Burns D K, Miller A M, Repa J J, Dietschy J M (2009). Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci USA, 106(7): 2377-2382
CrossRef Pubmed Google scholar
[25]
Loewen C J, Roy A, Levine T P (2003). A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J, 22(9): 2025-2035
CrossRef Pubmed Google scholar
[26]
Maxfield F R, van Meer G (2010). Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol, 22(4): 422-429
CrossRef Pubmed Google scholar
[27]
Mesmin B, Maxfield F R (2009). Intracellular sterol dynamics. Biochim Biophys Acta, 1791(7): 636-645
Pubmed
[28]
Naureckiene S, Sleat D E, Lackland H, Fensom A, Vanier M T, Wattiaux R, Jadot M, Lobel P (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science, 290(5500): 2298-2301
CrossRef Pubmed Google scholar
[29]
Ngo M H, Colbourne T R, Ridgway N D (2010). Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem J, 429(1): 13-24
CrossRef Pubmed Google scholar
[30]
Ohgami N, Ko D C, Thomas M, Scott M P, Chang C C, Chang T Y (2004). Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA, 101(34): 12473-12478
CrossRef Pubmed Google scholar
[31]
Ohsaki Y, Sugimoto Y, Suzuki M, Hosokawa H, Yoshimori T, Davies J P, Ioannou Y A, Vanier M T, Ohno K, Ninomiya H (2006). Cholesterol depletion facilitates ubiquitylation of NPC1 and its association with SKD1/Vps4. J Cell Sci, 119(Pt 13): 2643-2653
CrossRef Pubmed Google scholar
[32]
Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, Dacheux F, Dacheux J L, Sugita Y, Jin Y Z (1999). A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta, 1438(3): 377-387
Pubmed
[33]
Rigotti A, Cohen D E, Zanlungo S (2010). STARTing to understand MLN64 function in cholesterol transport. J Lipid Res, 51(8): 2015-2017
CrossRef Pubmed Google scholar
[34]
Rosenbaum A I, Zhang G, Warren J D, Maxfield F R (2010). Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci USA, 107(12): 5477-5482
CrossRef Pubmed Google scholar
[35]
Schulz T A, Choi M G, Raychaudhuri S, Mears J A, Ghirlando R, Hinshaw J E, Prinz W A (2009). Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol, 187(6): 889-903
CrossRef Pubmed Google scholar
[36]
Sleat D E, Wiseman J A, El-Banna M, Price S M, Verot L, Shen M M, Tint G S, Vanier M T, Walkley S U, Lobel P (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA, 101(16): 5886-5891
CrossRef Pubmed Google scholar
[37]
Soccio R E, Breslow J L (2003). StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem, 278(25): 22183-22186
CrossRef Pubmed Google scholar
[38]
Soccio R E, Breslow J L (2004). Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol, 24(7): 1150-1160
CrossRef Pubmed Google scholar
[39]
Subramanian K, Balch W E (2008). NPC1/NPC2 function as a tag team duo to mobilize cholesterol. Proc Natl Acad Sci USA, 105(40): 15223-15224
CrossRef Pubmed Google scholar
[40]
Suchanek M, Hynynen R, Wohlfahrt G, Lehto M, Johansson M, Saarinen H, Radzikowska A, Thiele C, Olkkonen V M (2007). The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem J, 405(3): 473-480
CrossRef Pubmed Google scholar
[41]
Taylor F R, Saucier S E, Shown E P, Parish E J, Kandutsch A A (1984). Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem, 259(20): 12382-12387
Pubmed
[42]
Wang M L, Motamed M, Infante R E, Abi-Mosleh L, Kwon H J, Brown M S, Goldstein J L (2010). Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab, 12(2): 166-173
CrossRef Pubmed Google scholar
[43]
Wang P, Zhang Y, Li H, Chieu H K, Munn A L, Yang H (2005a). AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO J, 24(17): 2989-2999
CrossRef Pubmed Google scholar
[44]
Wang P Y, Weng J, Anderson R G (2005b). OSBP is a cholesterol-regulated scaffolding protein in control of ERK1/2 activation. Science, 307(5714): 1472-1476
CrossRef Pubmed Google scholar
[45]
Willenborg M, Schmidt C K, Braun P, Landgrebe J, von Figura K, Saftig P, Eskelinen E L (2005). Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation. J Lipid Res, 46(12): 2559-2569
CrossRef Pubmed Google scholar
[46]
Wyles J P, McMaster C R, Ridgway N D (2002). Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J Biol Chem, 277(33): 29908-29918
CrossRef Pubmed Google scholar
[47]
Xu S, Benoff B, Liou H L, Lobel P, Stock A M (2007). Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem, 282(32): 23525-23531
CrossRef Pubmed Google scholar
[48]
Yan D, Mäyränpää M I, Wong J, Perttilä J, Lehto M, Jauhiainen M, Kovanen P T, Ehnholm C, Brown A J, Olkkonen V M (2008). OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J Biol Chem, 283(1): 332-340
CrossRef Pubmed Google scholar
[49]
Yan D, Olkkonen V M (2008). Characteristics of oxysterol binding proteins. Int Rev Cytol, 265: 253-285
CrossRef Pubmed Google scholar
[50]
Yang H (2006). Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol, 16(9): 427-432
CrossRef Pubmed Google scholar

Acknowledgements

This work is jointly supported by research grants from the Ara Parseghian Medical Research Foundation and the National Health and Medical Research Council of Australia (#510271). X. D. is a recipient of an Early Career in Research Award in the Faculty of Science, University of New South Wales. H. Y. is an inaugural Future Fellow of the Australian Research Council.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/