Advances in plant cell type-specific genome-wide studies of gene expression

Ying WANG, Yuling JIAO

PDF(117 KB)
PDF(117 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (5) : 384-389. DOI: 10.1007/s11515-011-1141-7
REVIEW
REVIEW

Advances in plant cell type-specific genome-wide studies of gene expression

Author information +
History +

Abstract

Cell is the functional unit of life. To study the complex interactions of systems of biological molecules, it is crucial to dissect these molecules at the cell level. In recent years, major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level. Approaches based on the isolation of cells, polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species. These cell-level data sets revealed previously unrecognized cellular properties, such as cell-specific gene expression modules and hormone response centers, and should serve as essential resources for functional genomic analyses. Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.

Keywords

transcriptome / cell type / plant

Cite this article

Download citation ▾
Ying WANG, Yuling JIAO. Advances in plant cell type-specific genome-wide studies of gene expression. Front Biol, 2011, 6(5): 384‒389 https://doi.org/10.1007/s11515-011-1141-7

References

[1]
Birnbaum K, Shasha D E, Wang J Y, Jung J W, Lambert G M, Galbraith D W, Benfey P N (2003). A gene expression map of the Arabidopsis root. Science, 302(5652): 1956–1960
CrossRef Pubmed Google scholar
[2]
Brady S M, Orlando D A, Lee J Y, Wang J Y, Koch J, Dinneny J R, Mace D, Ohler U, Benfey P N (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, 318(5851): 801–806
CrossRef Pubmed Google scholar
[3]
Brooks L 3rd, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire R J, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans M C, Schnable P S, Nettleton D, Scanlon M J (2009). Microdissection of shoot meristem functional domains. PLoS Genet, 5(5): e1000476
CrossRef Pubmed Google scholar
[4]
Cai S, Lashbrook C C (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol, 146(3): 1305–1321
CrossRef Pubmed Google scholar
[5]
Casson S, Spencer M, Walker K, Lindsey K (2005). Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J, 42(1): 111–123
CrossRef Pubmed Google scholar
[6]
Cho Y, Fernandes J, Kim SH, Walbot V (2002). Gene-expression profile comparisons distinguish seven organs of maize. Genome Biol, 3: research0045.1-0045.16
[7]
Deal R B, Henikoff S (2010). A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell, 18(6): 1030–1040
CrossRef Pubmed Google scholar
[8]
Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk L A, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable P S, Hochholdinger F (2007). Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol, 145(3): 575–588
CrossRef Pubmed Google scholar
[9]
Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002). Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA, 99(24): 15794–15799
CrossRef Pubmed Google scholar
[10]
Dinneny J R, Long T A, Wang J Y, Jung J W, Mace D, Pointer S, Barron C, Brady S M, Schiefelbein J, Benfey P N (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science, 320(5878): 942–945
CrossRef Pubmed Google scholar
[11]
Edwards D, Murray J A, Smith A G (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol, 117(3): 1015–1022
CrossRef Pubmed Google scholar
[12]
Emrich S J, Barbazuk W B, Li L, Schnable P S (2007). Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res, 17(1): 69–73
CrossRef Pubmed Google scholar
[13]
Engel M L, Chaboud A, Dumas C, McCormick S (2003). Sperm cells of Zea mays have a complex complement of mRNAs. Plant J, 34(5): 697–707
CrossRef Pubmed Google scholar
[14]
Galbraith D W, Birnbaum K (2006). Global studies of cell type-specific gene expression in plants. Annu Rev Plant Biol, 57(1): 451–475
CrossRef Pubmed Google scholar
[15]
Honys D, Twell D (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol, 5(11): R85
CrossRef Pubmed Google scholar
[16]
Ideker T, Galitski T, Hood L (2001). A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2(1): 343–372
CrossRef Pubmed Google scholar
[17]
Jiao Y, Lau O S, Deng X W (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 8(3): 217–230
CrossRef Pubmed Google scholar
[18]
Jiao Y, Meyerowitz E M (2010). Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol, 6: 419
CrossRef Pubmed Google scholar
[19]
Jiao Y, Tausta S L, Gandotra N, Sun N, Liu T, Clay N K, Ceserani T, Chen M, Ma L, Holford M, Zhang H Y, Zhao H, Deng X W, Nelson T (2009). A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet, 41(2): 258–263
CrossRef Pubmed Google scholar
[20]
Lee J Y, Colinas J, Wang J Y, Mace D, Ohler U, Benfey P N (2006). Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci USA, 103(15): 6055–6060
CrossRef Pubmed Google scholar
[21]
Lee J Y, Levesque M, Benfey P N (2005). High-throughput RNA isolation technologies. New tools for high-resolution gene expression profiling in plant systems. Plant Physiol, 138(2): 585–590
CrossRef Pubmed Google scholar
[22]
Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3): 596–615
CrossRef Pubmed Google scholar
[23]
Levesque M P, Vernoux T, Busch W, Cui H, Wang J Y, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann J U, Scheres B, Benfey P N (2006). Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol, 4(5): e143
CrossRef Pubmed Google scholar
[24]
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T P (2010). The developmental dynamics of the maize leaf transcriptome. Nat Genet, 42(12): 1060–1067
CrossRef Pubmed Google scholar
[25]
Long T A, Brady S M, Benfey P N (2008). Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol, 24(1): 81–103
CrossRef Pubmed Google scholar
[26]
Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng X W (2005). Organ-specific expression of Arabidopsis genome during development. Plant Physiol, 138(1): 80–91
CrossRef Pubmed Google scholar
[27]
Motose H, Sugiyama M, Fukuda H (2004). A proteoglycan mediates inductive interaction during plant vascular development. Nature, 429(6994): 873–878
CrossRef Pubmed Google scholar
[28]
Mustroph A, Zanetti M E, Jang C J, Holtan H E, Repetti P P, Galbraith D W, Girke T, Bailey-Serres J (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA, 106(44): 18843–18848
CrossRef Pubmed Google scholar
[29]
Nakazono M, Qiu F, Borsuk L A, Schnable P S (2003). Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell, 15(3): 583–596
CrossRef Pubmed Google scholar
[30]
Nawy T, Lee J Y, Colinas J, Wang J Y, Thongrod S C, Malamy J E, Birnbaum K, Benfey P N (2005). Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell, 17(7): 1908–1925
CrossRef Pubmed Google scholar
[31]
Nelson T, Gandotra N, Tausta S L (2008). Plant cell types: reporting and sampling with new technologies. Curr Opin Plant Biol, 11(5): 567–573
CrossRef Pubmed Google scholar
[32]
Nelson T, Tausta S L, Gandotra N, Liu T (2006). Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol, 57(1): 181–201
CrossRef Pubmed Google scholar
[33]
Pina C, Pinto F, Feijó J A, Becker J D (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol, 138(2): 744–756
CrossRef Pubmed Google scholar
[34]
Schmid M, Davison T S, Henz S R, Pape U J, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J U (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet, 37(5): 501–506
CrossRef Pubmed Google scholar
[35]
Spencer M W, Casson S A, Lindsey K (2007). Transcriptional profiling of the Arabidopsis embryo. Plant Physiol, 143(2): 924–940
CrossRef Pubmed Google scholar
[36]
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch B B, Siddiqui A, Lao K, Surani M A (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 6(5): 377–382
CrossRef Pubmed Google scholar
[37]
Van Gelder R N, von Zastrow M E, Yool A, Dement W C, Barchas J D, Eberwine J H (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA, 87(5): 1663–1667
CrossRef Pubmed Google scholar
[38]
Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004). Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry, 65(11): 1641–1649
CrossRef Pubmed Google scholar
[39]
Wuest S E, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol, 20(6): 506–512
CrossRef Pubmed Google scholar
[40]
Yadav R K, Girke T, Pasala S, Xie M, Reddy G V (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA, 106(12): 4941–4946
CrossRef Pubmed Google scholar
[41]
Zanetti M E, Chang I F, Gong F, Galbraith D W, Bailey-Serres J (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol, 138(2): 624–635
CrossRef Pubmed Google scholar
[42]
Zhang C, Barthelson R A, Lambert G M, Galbraith D W (2008). Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol, 147(1): 30–40
CrossRef Pubmed Google scholar

Acknowledgments

We thank EM Meyerowitz for his continuous support. We apologize to those authors for not being able to directly cite their work due to space constraints. YJ is supported in part by the State Key Laboratory of Plant Genomics, and by the ‘100 Talents Project’ of Chinese Academy of Sciences.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(117 KB)

Accesses

Citations

Detail

Sections
Recommended

/