MicroRNA-mediated DNA methylation in plants

Xiaoyun JIA, Jun YAN, Guiliang TANG

PDF(233 KB)
PDF(233 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 133-139. DOI: 10.1007/s11515-011-1136-4
REVIEW

MicroRNA-mediated DNA methylation in plants

Author information +
History +

Abstract

DNA methylation, a major event in epigenetics, plays an essential role in the control of gene expression. Increasing evidence suggests that long and short non-coding RNAs are involved extensively in plants to direct the establishment, spread, and removal of DNA cytosine methylation throughout their genomes. Yet, little has been known about the role of microRNAs (miRNAs) in DNA methylation although the role of small interfering RNAs (siRNAs) in DNA methylation has been well established. Several recent studies, however, provided the evidence for miRNA-directed DNA methylation in plants, and the working mechanisms still need to be fully explored. In this review, we highlight the key features of miRNA-directed DNA methylation in plants and provide insight into the complexities of such an event in plants. The interaction between miRNAs and the epigenetic machinery and the future potential research questions are briefly discussed.

Cite this article

Download citation ▾
Xiaoyun JIA, Jun YAN, Guiliang TANG. MicroRNA-mediated DNA methylation in plants. Front Biol, 2011, 6(2): 133‒139 https://doi.org/10.1007/s11515-011-1136-4

References

[1]
Ahmad A, Zhang Y, Cao X F (2010). Decoding the epigenetic language of plant development. Mol Plant, 3(4): 719-728
CrossRef Pubmed Google scholar
[2]
Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19(6): 1750-1769
CrossRef Pubmed Google scholar
[3]
Bao N, Lye K W, Barton M K (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 7(5): 653-662
CrossRef Pubmed Google scholar
[4]
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297
CrossRef Pubmed Google scholar
[5]
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320(5880): 1185-1190
CrossRef Pubmed Google scholar
[6]
Cao X, Jacobsen S E (2002). Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol, 12(13): 1138-1144
CrossRef Pubmed Google scholar
[7]
Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4): 642-655
CrossRef Pubmed Google scholar
[8]
Chan S W, Henderson I R, Jacobsen S E (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 6(5): 351-360
CrossRef Pubmed Google scholar
[9]
Chapman E J, Carrington J C (2007). Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 8(11): 884-896
CrossRef Pubmed Google scholar
[10]
Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010). siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res, 38(20): 6883-6894
CrossRef Pubmed Google scholar
[11]
Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666): 2022-2025
CrossRef Pubmed Google scholar
[12]
Chinnusamy V, Zhu J K (2009). Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 12(2): 133-139
CrossRef Pubmed Google scholar
[13]
Cokus S J, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C D, Pradhan S, Nelson S F, Pellegrini M, Jacobsen S E (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452(7184): 215-219
CrossRef Pubmed Google scholar
[14]
Das S, Foley N, Bryan K, Watters K M, Bray I, Murphy D M, Buckley P G, Stallings R L (2010). MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res, 70(20): 7874-7881
CrossRef Pubmed Google scholar
[15]
Fattash I, Voss B, Reski R, Hess W R, Frank W (2007). Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol, 7(1): 13
CrossRef Pubmed Google scholar
[16]
Ghildiyal M, Zamore P D (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet, 10(2): 94-108
CrossRef Pubmed Google scholar
[17]
Gonzalez S, Pisano D G, Serrano M (2008). Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle, 7(16): 2601-2608
CrossRef Pubmed Google scholar
[18]
Henderson I R, Jacobsen S E (2007). Epigenetic inheritance in plants. Nature, 447(7143): 418-424
CrossRef Pubmed Google scholar
[19]
Herr A J, Jensen M B, Dalmay T, Baulcombe D C (2005). RNA polymerase IV directs silencing of endogenous DNA. Science, 308(5718): 118-120
CrossRef Pubmed Google scholar
[20]
Kanno T, Huettel B, Mette M F, Aufsatz W, Jaligot E, Daxinger L, Kreil D P, Matzke M, Matzke A J (2005). Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet, 37(7): 761-765
CrossRef Pubmed Google scholar
[21]
Khraiwesh B, Arif M A, Seumel G I, Ossowski S, Weigel D, Reski R, Frank W (2010). Transcriptional control of gene expression by microRNAs. Cell, 140(1): 111-122
CrossRef Pubmed Google scholar
[22]
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230-16235
CrossRef Pubmed Google scholar
[23]
Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 21(6): 1762-1768
CrossRef Pubmed Google scholar
[24]
Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21(17): 4663-4670
CrossRef Pubmed Google scholar
[25]
Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 21(9): 2780-2796
CrossRef Pubmed Google scholar
[26]
Li C F, Pontes O, El-Shami M, Henderson I R, Bernatavichute Y V, Chan S W, Lagrange T, Pikaard C S, Jacobsen S E (2006). An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell, 126(1): 93-106
CrossRef Pubmed Google scholar
[27]
Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 139(1): 296-305
CrossRef Pubmed Google scholar
[28]
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053-2056
CrossRef Pubmed Google scholar
[29]
Matzke M, Kanno T, Daxinger L, Huettel B, Matzke A J (2009). RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol, 21(3): 367-376
CrossRef Pubmed Google scholar
[30]
Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 120(5): 613-622
CrossRef Pubmed Google scholar
[31]
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484-1495
CrossRef Pubmed Google scholar
[32]
Pontes O, Costa-Nunes P, Vithayathil P, Pikaard C S (2009). RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant, 2(4): 700-710
CrossRef Pubmed Google scholar
[33]
Qi Y, He X, Wang X J, Kohany O, Jurka J, Hannon G J (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114): 1008-1012
CrossRef Pubmed Google scholar
[34]
Ronemus M, Martienssen R (2005). RNA interference: methylation mystery. Nature, 433(7025): 472-473
CrossRef Pubmed Google scholar
[35]
Sunkar R, Girke T, Jain P K, Zhu J K (2005a). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397-1411
CrossRef Pubmed Google scholar
[36]
Sunkar R, Girke T, Zhu J K (2005b). Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res, 33(14): 4443-4454
CrossRef Pubmed Google scholar
[37]
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8(1): 25
CrossRef Pubmed Google scholar
[38]
Tang G, Reinhart B J, Bartel D P, Zamore P D (2003). A biochemical framework for RNA silencing in plants. Genes Dev, 17(1): 49-63
CrossRef Pubmed Google scholar
[39]
Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008). Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res, 36(20): 6429-6438
CrossRef Pubmed Google scholar
[40]
Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4): 669-687
CrossRef Pubmed Google scholar
[41]
Wolffe A P, Matzke M A (1999). Epigenetics: regulation through repression. Science, 286(5439): 481-486
CrossRef Pubmed Google scholar
[42]
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice microRNA effector complexes and targets. Plant Cell, 21(11): 3421-3435
CrossRef Pubmed Google scholar
[43]
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell, 38(3): 465-475
CrossRef Pubmed Google scholar
[44]
Xie Z, Johansen L K, Gustafson A M, Kasschau K D, Lellis A D, Zilberman D, Jacobsen S E, Carrington J C (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2(5): E104
CrossRef Pubmed Google scholar
[45]
Xie Z, Qi X (2008). Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta, 1779(11): 720-724
Pubmed
[46]
Zheng B, Wang Z, Li S, Yu B, Liu J Y, Chen X (2009). Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev, 23(24): 2850-2860
CrossRef Pubmed Google scholar
[47]
Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18(9): 1456-1465
CrossRef Pubmed Google scholar
[48]
Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607): 716-719
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(233 KB)

Accesses

Citations

Detail

Sections
Recommended

/