Heat shock proteins: Molecules with assorted functions
Surajit SARKAR, M. Dhruba SINGH, Renu YADAV, K. P. ARUNKUMAR, Geoffrey W. PITTMAN
Heat shock proteins: Molecules with assorted functions
Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.
heat shock protein / chaperone / chaperonin / Hsp100 / Hsp90 / Hsp70 / Hsp60 / sHsps / fertility / apoptosis / cytoskeleton
[1] |
Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, WoodageT K C, Worley D, Wu S, Yang Q A, Yao J, Ye R F, Yeh J S, Zaveri M, Zhan G, Zhang Q, Zhao L, Zheng X H, Zheng F N, Zhong W, Zhong X, Zhou S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C, (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185–2195
CrossRef
Pubmed
Google scholar
|
[2] |
Ambrosio L, Schedl P (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol, 105(1): 80–92
CrossRef
Pubmed
Google scholar
|
[3] |
Arrigo A P, Tanguay R M (1991). Expression of heat shock proteins during development in Drosophila. Results Probl Cell Differ, 17: 106–119
Pubmed
|
[4] |
Arya R, Lakhotia S C (2008). Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones, 13(4): 509–526
CrossRef
Pubmed
Google scholar
|
[5] |
Arya R, Mallik M, Lakhotia S C (2007). Heat shock genes-integrating cell survival and death. J Biosci, 32(3): 595–610
CrossRef
Pubmed
Google scholar
|
[6] |
Asquith K L, Baleato R M, McLaughlin E A, Nixon B, Aitken R J (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci, 117(Pt 16): 3645–3657
CrossRef
Pubmed
Google scholar
|
[7] |
Baena-López L A, Alonso J, Rodriguez J, Santarén J F (2008). The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res, 7(7): 2780–2788
CrossRef
Pubmed
Google scholar
|
[8] |
Betrán E, Thornton K, Long M (2002). Retroposed new genes out of the X in Drosophila. Genome Res, 12(12): 1854–1859
CrossRef
Pubmed
Google scholar
|
[9] |
Boilard M, Reyes-Moreno C, Lachance C, Massicotte L, Bailey J L, Sirard M A, Leclerc P (2004). Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod, 71(6): 1879–1889
CrossRef
Pubmed
Google scholar
|
[10] |
Bond U, Schlesinger M J (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol, 5(5): 949–956
Pubmed
|
[11] |
Bösl B, Grimminger V, Walter S (2005). Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem, 280(46): 38170–38176
CrossRef
Pubmed
Google scholar
|
[12] |
Bukau B, Horwich A L (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3): 351–366
CrossRef
Pubmed
Google scholar
|
[13] |
Burmester T, Mink M, Pál M, Lászlóffy Z, Lepesant J, Maróy P (2000). Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster. Gene, 246(1–2): 157–167
CrossRef
Pubmed
Google scholar
|
[14] |
Burns R G, Surridge C D (1994). Functional role of a consensus peptide which is common to alpha-, beta-, and gamma-tubulin, to actin and centractin, to phytochrome A, and to the TCP1 alpha chaperonin protein. FEBS Lett, 347(2–3): 105–111
CrossRef
Pubmed
Google scholar
|
[15] |
Candido E P (2002). The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol, 28: 61–78
Pubmed
|
[16] |
Caplan A J (2003). What is a co-chaperone? Cell Stress Chaperones, 8(2): 105–107
CrossRef
Pubmed
Google scholar
|
[18] |
Carbajal M E, Valet J P, Charest P M, Tanguay R M (1990). Purification of Drosophila hsp 83 and immunoelectron microscopic localization. Eur J Cell Biol, 52(1): 147–156
Pubmed
|
[19] |
Cavanagh A C (1996). Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod, 1(1): 28–32
CrossRef
Pubmed
Google scholar
|
[20] |
Chan H Y, Warrick J M, Andriola I, Merry D, Bonini N M (2002). Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet, 11(23): 2895–2904
CrossRef
Pubmed
Google scholar
|
[21] |
Chandrasekhar G N, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem, 261(26): 12414–12419
Pubmed
|
[22] |
Chen X, Sullivan D S, Huffaker T C (1994). Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA, 91(19): 9111–9115
CrossRef
Pubmed
Google scholar
|
[23] |
Chun J N, Choi B, Lee K W, Lee D J, Kang D H, Lee J Y, Song I S, Kim H I, Lee S H, Kim H S, Lee N K, Lee S Y, Lee K J, Kim J, Kang S W, Linden R (2010). Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE, 5(3): e9422
CrossRef
Pubmed
Google scholar
|
[24] |
Clarke A K (1996). Variation on a theme: Combined molecular chaperone and proteolysis functions in Clp/Hsp100 proteins. J Biosci, 21(2): 161–177
CrossRef
Google scholar
|
[25] |
Creutz C E, Liou A, Snyder S L, Brownawell A, Willison K (1994). Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1). J Biol Chem, 269(51): 32035–32038
Pubmed
|
[26] |
Csermely P (1997). Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem Sci, 22(5): 147–149
CrossRef
Pubmed
Google scholar
|
[27] |
Csermely P, Kahn C R (1991). The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem, 266(8): 4943–4950
Pubmed
|
[28] |
Csermely P, Kajtár J, Hollósi M, Oikarinen J, Somogyi J (1994). The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem Biophys Res Commun, 202(3): 1657–1663
CrossRef
Pubmed
Google scholar
|
[29] |
Csermely P, Schnaider T, Soti C, Prohaszka Z, Nadai G (1998). The 90 kDa molecular chaperone family: Structure, function and clinical applications. A comprehensive review. J Phar Ther, 79(2): 129–168
CrossRef
Google scholar
|
[30] |
Cutforth T, Rubin G M (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell, 77(7): 1027–1036
CrossRef
Pubmed
Google scholar
|
[31] |
Czar M J, Owens-Grillo J K, Dittmar K D, Hutchison K A, Zacharek A M, Leach K L, Deibel M R Jr, Pratt W B (1994). Characterization of the protein-protein interactions determining the heat shock protein (hsp90.hsp70.hsp56) heterocomplex. J Biol Chem, 269(15): 11155–11161
Pubmed
|
[32] |
de Graeff-Meeder E R, Voorhorst M, van Eden W, Schuurman H J, Huber J, Barkley D, Maini R N, Kuis W, Rijkers G T, Zegers B J (1990). Antibodies to the mycobacterial 65-kD heat-shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Pathol, 137(5): 1013–1017
Pubmed
|
[33] |
Dix D J (1997). Hsp70 expression and function during gametogenesis. Cell Stress Chaperones, 2(2): 73–77
CrossRef
Pubmed
Google scholar
|
[34] |
Eddy E M (1998). HSP70-2 heat-shock protein of mouse spermatogenic cells. J Exp Zool, 282(1–2): 261–271
CrossRef
Pubmed
Google scholar
|
[35] |
Ellis J (1987). Proteins as molecular chaperones. Nature, 328(6129): 378–379
CrossRef
Pubmed
Google scholar
|
[36] |
Ellis R J (2005). Chaperomics: in vivo GroEL function defined. Curr Biol, 15(17): 661–663
CrossRef
Pubmed
Google scholar
|
[37] |
Eskes R, Desagher S, Antonsson B, Martinou J C (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol, 20(3): 929–935
CrossRef
Pubmed
Google scholar
|
[38] |
Feder M E, Hofmann G E (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol, 61(1): 243–282
CrossRef
Pubmed
Google scholar
|
[39] |
Feldman D E, Frydman J (2000). Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol, 10(1): 26–33
CrossRef
Pubmed
Google scholar
|
[40] |
Feltham J L, Gierasch L M (2000). GroEL-substrate interactions: molding the fold, or folding the mold? Cell, 100(2): 193–196
CrossRef
Pubmed
Google scholar
|
[41] |
Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H (2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol, 54(5): 1445–1462
CrossRef
Pubmed
Google scholar
|
[42] |
Galdiero M, de l’Ero G C, Marcatili A (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun, 65(2): 699–707
Pubmed
|
[43] |
Gao Y, Thomas J O, Chow R L, Lee G H, Cowan N J (1992). A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell, 69(6): 1043–1050
CrossRef
Pubmed
Google scholar
|
[44] |
Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 286(3): 433–442
CrossRef
Pubmed
Google scholar
|
[45] |
Gerthoffer W T, Gunst S J (2001). Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol, 91(2): 963–972
Pubmed
|
[46] |
Gething M J, Sambrook J (1992). Protein folding in the cell. Nature, 355(6355): 33–45
CrossRef
Pubmed
Google scholar
|
[47] |
Glass J I, Lefkowitz E J, Glass J S, Heiner C R, Chen E Y, Cassell G H (2000). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature, 407(6805): 757–762
CrossRef
Pubmed
Google scholar
|
[48] |
Gong W J, Golic K G (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics, 172(1): 275–286
CrossRef
Pubmed
Google scholar
|
[49] |
Gozes I, Brenneman D E (1996). Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci, 7(4): 235–244
CrossRef
Pubmed
Google scholar
|
[50] |
Grantham J, Ruddock L W, Roobol A, Carden M J (2002). Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones, 7(3): 235–242
CrossRef
Pubmed
Google scholar
|
[51] |
Günther E, Walter L (1994). Genetic aspects of the hsp70 multigene family in vertebrates. Experientia, 50(11–12): 987–1001
CrossRef
Pubmed
Google scholar
|
[52] |
Gupta R S (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol, 15(1): 1–11
CrossRef
Pubmed
Google scholar
|
[53] |
Gupta R S, Ramachandra N B, Bowes T, Singh B (2008). Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp, 291: 59–68, discussion 69–73, 137–140
CrossRef
Pubmed
Google scholar
|
[54] |
Gupta S, Knowlton A A (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation, 106(21): 2727–2733
CrossRef
Pubmed
Google scholar
|
[55] |
Hackett R W, Lis J T (1983). Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res, 11(20): 7011–7030
CrossRef
Pubmed
Google scholar
|
[56] |
Hartl F U, Martin J, Neupert W (1992). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct, 21(1): 293–322
CrossRef
Pubmed
Google scholar
|
[57] |
Heikkila J J (2010). Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol, 156(1): 19–33
CrossRef
Pubmed
Google scholar
|
[58] |
Hemmingsen S M (1992). What is a chaperonin? Nature, 357(6380): 650–650
CrossRef
Pubmed
Google scholar
|
[59] |
Heufelder A E, Wenzel B E, Bahn R S (1992). Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab, 74(4): 732–736
CrossRef
Pubmed
Google scholar
|
[60] |
Hightower L E, Seth S E (1994). Interactions of vertebrate Hsc70 and HSP70 with unfolded proteins and peptides. In “The Biology of Heat Shock Proteins and Molecular Chaperones”, Morimoto RI (ed), Cold Spring Harbour Lab Press, NY, 179–207
|
[61] |
Hill J E, Penny S L, Crowell K G, Goh S H, Hemmingsen S M (2004). cpnDB: a chaperonin sequence database. Genome Res, 14(8): 1669–1675
CrossRef
Pubmed
Google scholar
|
[62] |
Hixon W G, Searcy D G (1993). Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems, 29(2–3): 151–160
CrossRef
Pubmed
Google scholar
|
[63] |
Hochstrasser M (1992). Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol, 4(6): 1024–1031
CrossRef
Pubmed
Google scholar
|
[64] |
Houlihan J L, Metzler J J, Blum J S (2009). HSP90alpha and HSP90beta isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol, 182(12): 7451–7458
CrossRef
Pubmed
Google scholar
|
[65] |
Houry W A, Frishman D, Eckerskorn C, Lottspeich F, Hartl F U (1999). Identification of in vivo substrates of the chaperonin GroEL. Nature, 402(6758): 147–154
CrossRef
Pubmed
Google scholar
|
[66] |
Hwang M, Moretti L, Lu B (2009). HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem, 16(24): 3081–3092
CrossRef
Pubmed
Google scholar
|
[67] |
Inano K, Curtis S W, Korach K S, Omata S, Horigome T (1994). Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem, 116(4): 759–766
Pubmed
|
[68] |
Ireland R C, Berger E M (1982). Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA, 79(3): 855–859
CrossRef
Pubmed
Google scholar
|
[69] |
Ito H, Kamei K, Iwamoto I, Inaguma Y, Tsuzuki M, Kishikawa M, Shimada A, Hosokawa M, Kato K (2003). Hsp27 suppresses the formation of inclusion bodies induced by expression of R120G alpha B-crystallin, a cause of desmin-related myopathy. Cell Mol Life Sci, 60(6): 1217–1223
Pubmed
|
[70] |
Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell, 39(2): 292–299
CrossRef
Pubmed
Google scholar
|
[71] |
Jakus S, Neuer A, Dieterle S, Bongiovanni A M, Witkin S S (2008). Antibody to the Chlamydia trachomatis 60 kDa heat shock protein in follicular fluid and in vitro fertilization outcome. Am J Reprod Immunol, 59(2): 85–89
CrossRef
Pubmed
Google scholar
|
[72] |
Jinn T L, Chen Y M, Lin C Y (1995). Characterization and physiological function of Class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol, 108(2): 693–701
Pubmed
|
[73] |
Johnston M, Geoffroy M C, Sobala A, Hay R, Hutvagner G (2010). HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell, 21(9): 1462–1469
CrossRef
Pubmed
Google scholar
|
[74] |
Jost M, Kari C, Rodeck U (2000). The EGF receptor- an essential regulator of multiple epidermal functions. Eur J Dermatol, 10(7): 505–510
Pubmed
|
[75] |
Kagawa H K, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent J D (1995). The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol, 253(5): 712–725
CrossRef
Pubmed
Google scholar
|
[76] |
Kampinga H H, Craig E A (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol, 11(8): 579–592
CrossRef
Pubmed
Google scholar
|
[77] |
Kappé G, Franck E, Verschuure P, Boelens W C, Leunissen J A, de Jong W W (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 8(1): 53–61
CrossRef
Pubmed
Google scholar
|
[78] |
Katinka M D, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès C P (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, 414(6862): 450–453
CrossRef
Pubmed
Google scholar
|
[79] |
Kellermayer M S, Csermely P (1995). ATP induces dissociation of the 90 kDa heat shock protein (hsp90) from F-actin: interference with the binding of heavy meromyosin. Biochem Biophys Res Commun, 211(1): 166–174
CrossRef
Pubmed
Google scholar
|
[80] |
Kikis E A, Gidalevitz T, Morimoto R I (2010). Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol, 694: 138–159
Pubmed
|
[81] |
Kitagawa M, Wada C, Yoshioka S, Yura T (1991). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J Bacteriol, 173(14): 4247–4253
Pubmed
|
[82] |
Kol A, Lichtman A H, Finberg R W, Libby P, Kurt-Jones E A (2000). Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol, 164(1): 13–17
Pubmed
|
[83] |
Kozlova T, Perezgasga L, Reynaud E, Zurita M (1997). The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10AC and is differentially expressed during fly development. Dev Genes Evol, 207(4): 253–263
CrossRef
Google scholar
|
[84] |
Kurtz S, Rossi J, Petko L, Lindquist S (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogensis. Science, 231(4742): 1154–1157
CrossRef
Pubmed
Google scholar
|
[85] |
Lakhotia S C (2001). Heat Shock Response- Regulation and Functions of Coding and non-coding genes in Drosophila. Proc Ind Natl Acad Sci, B5:247–264.
|
[86] |
Lakhotia S C, Singh A K (1989). A novel heat shock polypeptide in Malpighian tubule of Drosophila melanogaster. J Genet, 68(3): 129–268
CrossRef
Google scholar
|
[87] |
Laplante A F, Moulin V, Auger F A, Landry J, Li H, Morrow G, Tanguay R M, Germain L (1998). Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem, 46(11): 1291–1301
Pubmed
|
[88] |
Larsen J K, Yamboliev I A, Weber L A, Gerthoffer W T (1997). Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol, 273(5 Pt 1): L930–L940
Pubmed
|
[89] |
Leicht B G, Biessmann H, Palter K B, Bonner J J (1986). Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci USA, 83(1): 90–94
CrossRef
Pubmed
Google scholar
|
[90] |
Leonhardt S A, Fearson K, Danese P N, Mason T L (1993). HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol, 13(10): 6304–6313
Pubmed
|
[91] |
Leroux M R, Candido E P M (1997). Subunit characterization of the Caenorhabditis elegans chaperonin containing TCP-1 and expression pattern of the gene encoding CCT-1. Biochem Biophys Res Commun, 241(3): 687–692
CrossRef
Pubmed
Google scholar
|
[92] |
Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu Z G (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem, 275(14): 10519–10526
CrossRef
Pubmed
Google scholar
|
[93] |
Lilie H, Lang K, Rudolph R, Buchner J (1993). Prolyl isomerases catalyze antibody folding in vitro. Protein Sci, 2(9): 1490–1496
CrossRef
Pubmed
Google scholar
|
[94] |
Lindquist S (1980). Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol, 77(2): 463–479
CrossRef
Pubmed
Google scholar
|
[95] |
Lindquist S (1986). The heat-shock response. Annu Rev Biochem, 55(1): 1151–1191
CrossRef
Pubmed
Google scholar
|
[96] |
Lopatin D E, Combs A, Sweier D G, Fenno J C, Dhamija S (2000). Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun, 68(4): 1980–1987
CrossRef
Pubmed
Google scholar
|
[97] |
Matzinger P (2002). The danger model: a renewed sense of self. Science, 296(5566): 301–305
CrossRef
Pubmed
Google scholar
|
[98] |
Mayer M P (2010). Gymnastics of molecular chaperones. Mol Cell, 39(3): 321–331
CrossRef
Pubmed
Google scholar
|
[99] |
McDonough H, Patterson C (2003). CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones, 8(4): 303–308
CrossRef
Pubmed
Google scholar
|
[100] |
McKay D B (1991). Structure of the 70-kilodalton heat-shock-related proteins. Springer Semin Immunopathol, 13(1): 1–9
CrossRef
Pubmed
Google scholar
|
[101] |
Meinhardt A, Parvinen M, Bacher M, Aumüller G, Hakovirta H, Yagi A, Seitz J (1995). Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod, 52(4): 798–807
CrossRef
Pubmed
Google scholar
|
[102] |
Melki R, Cowan N J (1994). Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol, 14(5): 2895–2904
Pubmed
|
[103] |
Michaud S, Morrow G, Marchand J, Tanguay R M (2002). Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol, 28: 79–101
Pubmed
|
[104] |
Mikhaylova L M, Nguyen K, Nurminsky D I (2008). Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics, 179(1): 305–315
CrossRef
Pubmed
Google scholar
|
[105] |
Miklos D, Caplan S, Mertens D, Hynes G, Pitluk Z, Kashi Y, Harrison-Lavoie K, Stevenson S, Brown C, Barrell B,
CrossRef
Pubmed
Google scholar
|
[106] |
Miller S G, Leclerc R F, Erdos G W (1990). Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol, 214(2): 407–422
CrossRef
Pubmed
Google scholar
|
[107] |
Morange M (2006). HSFs in development. Handb Exp Pharmacol, 172(172): 153–169
CrossRef
Pubmed
Google scholar
|
[108] |
Morcillo G, Diez J L, Carbajal M E, Tanguay R M (1993). HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma, 102(9): 648–659
CrossRef
Pubmed
Google scholar
|
[109] |
Morrow G, Heikkila J J, Tanguay R M (2006). Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones, 11(1): 51–60
CrossRef
Pubmed
Google scholar
|
[110] |
Morrow G, Tanguay R M (2003). Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol, 14(5): 291–299
CrossRef
Pubmed
Google scholar
|
[111] |
Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep, 2(12): 1133–1138
CrossRef
Pubmed
Google scholar
|
[112] |
Naaby-Hansen S, Herr J C (2010). Heat shock proteins on the human sperm surface. J Reprod Immunol, 84(1): 32–40
CrossRef
Pubmed
Google scholar
|
[113] |
Nakahara K, Kim K, Sciulli C, Dowd S R, Minden J S, Carthew R W (2005). Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA, 102(34): 12023–12028
CrossRef
Pubmed
Google scholar
|
[114] |
Neuer A, Lam K N, Tiller F W, Kiesel L, Witkin S S (1997). Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Hum Reprod, 12(5): 925–929
CrossRef
Pubmed
Google scholar
|
[115] |
Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S (2000). The role of heat shock protein in reproduction. Hum Repro Updt, 6(2): 149–159
CrossRef
Google scholar
|
[116] |
Nollen E A, Morimoto R I (2002). Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci, 115(Pt 14): 2809–2816
Pubmed
|
[117] |
Nover L, ed. (1984). Heat Shock Response in eukaryotic cells. Springer-Verlag, Berlin, pp-1–78.
|
[118] |
Novoselova T V, Margulis B A, Novoselov S S, Sapozhnikov A M, van der Spuy J, Cheetham M E, Guzhova I V (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem, 94(3): 597–606
CrossRef
Pubmed
Google scholar
|
[119] |
Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula S M, Kumar V, Weichselbaum R, Nalin C, Alnemri E S, Kufe D, Kharbanda S (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J, 19(16): 4310–4322
CrossRef
Pubmed
Google scholar
|
[120] |
Paranko J, Seitz J, Meinhardt A (1996). Developmental expression of heat shock protein 60 (HSP60) in the rat testis and ovary. Differentiation, 60(3): 159–167
CrossRef
Pubmed
Google scholar
|
[121] |
Parsell D A, Lindquist S (1994). Heat shock proteins and stress tolerance. In “The Biology of Heat Shock proteins and Molecular Chaperones”, Morimoto RI. (ed), Cold Spring Harbor Lab Press, NY, 457–493
|
[122] |
Parsell D A, Sanchez Y, Stitzel J D, Lindquist S (1991). Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature, 353(6341): 270–273
CrossRef
Pubmed
Google scholar
|
[123] |
Pauli D, Arrigo A P, Tissières A (1992). Heat shock response in Drosophila. Experientia, 48(7): 623–629
CrossRef
Pubmed
Google scholar
|
[124] |
Pelham H R (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46(7): 959–961
CrossRef
Pubmed
Google scholar
|
[125] |
Pfister G, Stroh C M, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci, 118(Pt 8): 1587–1594
CrossRef
Pubmed
Google scholar
|
[126] |
Pockley A G (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 105(8): 1012–1017
CrossRef
Pubmed
Google scholar
|
[127] |
Pratt W B, Czar M J, Stancato L F, Owens J K (1993). The hsp56 immunophilin component of steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein? J Steroid Biochem Mol Biol, 46(3): 269–279
CrossRef
Pubmed
Google scholar
|
[128] |
Pratt W B, Toft D O (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood), 228(2): 111–133
Pubmed
|
[129] |
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 298(5593): 597–600
CrossRef
Pubmed
Google scholar
|
[130] |
Ranford J C, Coates A R, Henderson B (2000). Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med, 2(8): 1–17
CrossRef
Pubmed
Google scholar
|
[131] |
Ranson N A, White H E, Saibil H R (1998). Chaperonins. Biochem J, 333(Pt 2): 233–242
Pubmed
|
[132] |
Rassow J, Ahsen O V, Bomer U, Pfanner N (1997). Molecular chaperones: Towards a characterization of the heat-shock protein 70 family. Trends Genet, 7: 129–133
|
[133] |
Retzlaff C, Yamamoto Y, Hoffman P S, Friedman H, Klein T W (1994). Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun, 62(12): 5689–5693
Pubmed
|
[134] |
Richter K, Haslbeck M, Buchner J (2010). The heat shock response: life on the verge of death. Mol Cell, 40(2): 253–266
CrossRef
Pubmed
Google scholar
|
[135] |
Ritossa F A (1962). A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia, 18(12): 571–573
CrossRef
Google scholar
|
[136] |
Roobol A, Carden M J (1999). Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol, 78(1): 21–32
Pubmed
|
[137] |
Roobol A, Holmes F E, Hayes N V L, Baines A J, Carden M J (1995). Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci, 108(Pt 4): 1477–1488
Pubmed
|
[138] |
Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science, 287(5461): 2204–2215
CrossRef
Pubmed
Google scholar
|
[139] |
Rutherford S, Knapp J R, Csermely P (2007). Hsp90 and developmental networks. Adv Exp Med Biol, 594: 190–197
CrossRef
Pubmed
Google scholar
|
[140] |
Rutherford S L (2003). Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet, 4(4): 263–274
CrossRef
Pubmed
Google scholar
|
[141] |
Rutherford S L, Lindquist S (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396(6709): 336–342
CrossRef
Pubmed
Google scholar
|
[142] |
Saibil H (1996). The lid that shapes the pot: structure and function of the chaperonin GroES. Structure, 4(1): 1–4
CrossRef
Pubmed
Google scholar
|
[143] |
Samali A, Cai J, Zhivotovsky B, Jones D P, Orrenius S (1999). Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J, 18(8): 2040–2048
CrossRef
Pubmed
Google scholar
|
[144] |
Sanchez Y, Lindquist S L (1990). HSP104 required for induced thermotolerance. Science, 248(4959): 1112–1115
CrossRef
Pubmed
Google scholar
|
[145] |
Sarge K D, Cullen K E (1997). Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci, 53(2): 191–197
CrossRef
Pubmed
Google scholar
|
[146] |
Sarkar S, Arya S, Lakhotia S C (2006) Chaperonins in life and death. In: Stress response: a molecular biology approach (A.S. Sreedhar ed): Signpost Publication: Trivandrum, India (p 43–60).
|
[147] |
Sarkar S, Lakhotia S C (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet, 84(3): 265–281
CrossRef
Pubmed
Google scholar
|
[148] |
Sarkar S, Lakhotia S C (2008). Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev Dyn, 237(5): 1334–1347
CrossRef
Pubmed
Google scholar
|
[149] |
Schirmer E C, Glover J R, Singer M A, Lindquist S (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci, 21(8): 289–296
Pubmed
|
[150] |
Shinoda H, Huang C C (1996). Heat shock proteins in middle ear cholesteatoma. Otolaryngol Head Neck Surg, 114(1): 77–83
CrossRef
Pubmed
Google scholar
|
[151] |
Singh B N, Lakhotia S C (1995). The non-induction of heat shocked Malpighian tubules of Drosophila larvae is not due to constitutive presence of hsp70 or hsc70. Curr Sci, 69: 178–182
|
[152] |
Sjögren L L, MacDonald T M, Sutinen S, Clarke A K (2004). Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol, 136(4): 4114–4126
CrossRef
Pubmed
Google scholar
|
[153] |
Slavotinek A M, Biesecker L G (2001). Unfolding the role of chaperones and chaperonins in human disease. Trends Genet, 17(9): 528–535
CrossRef
Pubmed
Google scholar
|
[154] |
Soares H, Penque D, Mouta C, Rodrigues-Pousada C (1994). A Tetrahymena orthologue of the mouse chaperonin subunit CCT gamma and its coexpression with tubulin during cilia recovery. J Biol Chem, 269(46): 29299–29307
Pubmed
|
[155] |
Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D, Ruden D M (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet, 33(1): 70–74
CrossRef
Pubmed
Google scholar
|
[156] |
Soltys B J, Gupta R S (1996). Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res, 222(1): 16–27
CrossRef
Pubmed
Google scholar
|
[157] |
Soltys B J, Gupta R S (1999). Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci, 24(5): 174–177
CrossRef
Pubmed
Google scholar
|
[158] |
Song H Y, Dunbar J D, Zhang Y X, Guo D, Donner D B (1995). Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem, 270(8): 3574–3581
CrossRef
Pubmed
Google scholar
|
[159] |
Soti C, Csermely P (2002). Chaperones come of age. Cell Stress Chaperones, 7(2): 186–190
CrossRef
Pubmed
Google scholar
|
[160] |
Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005). Heat shock proteins as emerging therapeutic targets. Br J Pharmacol, 146(6): 769–780
CrossRef
Pubmed
Google scholar
|
[161] |
Southgate R, Ayme A, Voellmy R (1983). Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol, 165(1): 35–57
CrossRef
Pubmed
Google scholar
|
[162] |
Spiess C, Meyer A S, Reissmann S, Frydman J (2004). Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol, 14(11): 598–604
CrossRef
Pubmed
Google scholar
|
[163] |
Squires C L, Pedersen S, Ross B M, Squires C (1991). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol, 173(14): 4254–4262
Pubmed
|
[164] |
Srinivas U K, Revathi C J, Das M R (1987). Heat-induced expression of albumin during early stages of rat embryo development. Mol Cell Biol, 7(12): 4599–4602
Pubmed
|
[165] |
Sternlicht H, Farr G W, Sternlicht M L, Driscoll J K, Willison K, Yaffe M B (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA, 90(20): 9422–9426
CrossRef
Pubmed
Google scholar
|
[166] |
Sun Y, MacRae T H (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci, 62(21): 2460–2476
CrossRef
Pubmed
Google scholar
|
[167] |
Tabibzadeh S, Kong Q F, Satyaswaroop P G, Babaknia A (1996). Heat shock proteins in human endometrium throughout the menstrual cycle. Hum Reprod, 11(3): 633–640
Pubmed
|
[168] |
Tai P K, Albers M W, Chang H, Faber L E, Schreiber S L (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science, 256(5061): 1315–1318
CrossRef
Pubmed
Google scholar
|
[169] |
Tai P K, Faber L E (1985). Isolation of dissimilar components of the 8.5S nonactivated uterine progestin receptor. Can J Biochem Cell Biol, 63(1): 41–49
CrossRef
Pubmed
Google scholar
|
[170] |
Taipale M, Jarosz D F, Lindquist S (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol, 11(7): 515–528
CrossRef
Pubmed
Google scholar
|
[171] |
Thirumalai D, Lorimer G H (2001). Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct, 30(1): 245–269
CrossRef
Pubmed
Google scholar
|
[172] |
Thornberry N A, Lazebnik Y (1998). Caspases: enemies within. Science, 281(5381): 1312–1316
CrossRef
Pubmed
Google scholar
|
[173] |
Timakov B, Zhang P (2001). The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones, 6(1): 71–77
CrossRef
Pubmed
Google scholar
|
[174] |
Tissières A, Mitchell H K, Tracy U M (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol, 84(3): 389–398
CrossRef
Pubmed
Google scholar
|
[175] |
Togo T, Dickson D W (2002). Ballooned neurons in progressive supranuclear palsy are usually due to concurrent argyrophilic grain disease. Acta Neuropathol, 104(1): 53–56
CrossRef
Pubmed
Google scholar
|
[176] |
Török Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vígh L (1997). Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA, 94(6): 2192–2197
CrossRef
Pubmed
Google scholar
|
[177] |
Trent J D, Kagawa H K, Yaoi T, Olle E, Zaluzec N J (1997). Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA, 94(10): 5383–5388
CrossRef
Pubmed
Google scholar
|
[178] |
Trent J D, Nimmesgern E, Wall J S, Hartl F U, Horwich A L (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature, 354(6353): 490–493
CrossRef
Pubmed
Google scholar
|
[179] |
Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer, 10(8): 537–549
CrossRef
Pubmed
Google scholar
|
[180] |
Ursic D, Culbertson M R (1991). The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol, 11(5): 2629–2640
Pubmed
|
[181] |
Ursic D, Sedbrook J C, Himmel K L, Culbertson M R (1994). The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell, 5(10): 1065–1080
Pubmed
|
[182] |
van der Straten A, Rommel C, Dickson B, Hafen E (1997). The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J, 16(8): 1961–1969
CrossRef
Pubmed
Google scholar
|
[183] |
van Eden W (2006). Immunoregulation of autoimmune diseases. Hum Immunol, 67(6): 446–453
CrossRef
Pubmed
Google scholar
|
[184] |
Verdegaal M E, Zegveld S T, van Furth R (1996). Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol, 157(1): 369–376
Pubmed
|
[185] |
Vinh D B, Drubin D G (1994). A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA, 91(19): 9116–9120
CrossRef
Pubmed
Google scholar
|
[186] |
Voellmy R, Bromley P, Kocher H P (1983). Structural similarities between corresponding heat-shock proteins from different eucaryotic cells. J Biol Chem, 258(6): 3516–3522
Pubmed
|
[187] |
Vos M J, Zijlstra M P, Kanon B, van Waarde-Verhagen M A, Brunt E R, Oosterveld-Hut H M, Carra S, Sibon O C, Kampinga H H (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet, 19(23): 4677–4693
CrossRef
Pubmed
Google scholar
|
[188] |
Werner A, Meinhardt A, Seitz J, Bergmann M (1997). Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res, 288(3): 539–544
CrossRef
Pubmed
Google scholar
|
[189] |
Werner A, Seitz J, Meinhardt A, Bergmann M (1996). Distribution pattern of HSP60 immunoreactivity in the testicular tissue of infertile men. Ann Anat, 178(1): 81–82
Pubmed
|
[190] |
Whitley D, Goldberg S P, Jordan W D (1999). Heat shock proteins: a review of the molecular chaperones. J Vasc Surg, 29(4): 748–751
CrossRef
Pubmed
Google scholar
|
[190] |
Wolf B B, Green D R (1999). Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem, 274(29): 20049–20052
CrossRef
Pubmed
Google scholar
|
[191] |
Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson D W (1999). Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J, 18(8): 2049–2056
CrossRef
Pubmed
Google scholar
|
[192] |
Xu Q, Wick G (1996). The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today, 2(9): 372–379
CrossRef
Pubmed
Google scholar
|
[193] |
Yaffe M B, Farr G W, Miklos D, Horwich A L, Sternlicht M L, Sternlicht H (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358(6383): 245–248
CrossRef
Pubmed
Google scholar
|
[194] |
Yahara I (1999). The role of HSP90 in evolution. Genes Cells, 4(7): 375–379
CrossRef
Pubmed
Google scholar
|
[195] |
Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H (1991). Characterization of the hydrophobic region of heat shock protein 90. J Biochem, 110(1): 141–145
Pubmed
|
[196] |
Zhang L, Koivisto L, Heino J, Uitto V J (2004). Bacterial heat shock protein 60 may increase epithelial cell migration through activation of MAP kinases and inhibition of α6β4 integrin expression. Biochem Biophys Res Commun, 319(4): 1088–1095
CrossRef
Pubmed
Google scholar
|
[197] |
Zhang L, Pelech S L, Mayrand D, Grenier D, Heino J, Uitto V J (2001). Bacterial heat shock protein-60 increases epithelial cell proliferation through the ERK1/2 MAP kinases. Exp Cell Res, 266(1): 11–20
CrossRef
Pubmed
Google scholar
|
[198] |
Zhao R, Davey M, Hsu Y C, Kaplanek P, Tong A, Parsons A B, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry W A (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell, 120(5): 715–727
CrossRef
Pubmed
Google scholar
|
[199] |
Zimmerman J L, Petri W, Meselson M (1983). Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell, 32(4): 1161–1170
CrossRef
Pubmed
Google scholar
|
[200] |
Zügel U, Kaufmann S H (1999). Immune response against heat shock proteins in infectious diseases. Immunobiology, 201(1): 22–35
Pubmed
|
/
〈 | 〉 |