Neurexins and neuroligins: new partners for GABAA receptors at synapses

Bei WU, Chen ZHANG

PDF(204 KB)
PDF(204 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 251-260. DOI: 10.1007/s11515-011-1020-2
REVIEW
REVIEW

Neurexins and neuroligins: new partners for GABAA receptors at synapses

Author information +
History +

Abstract

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. As one of several types of endogenous receptors, GABAA receptors have been shown to be essential in most, if not all, aspects of brain functioning, including neural development and information processing. Mutations in genes encoding GABAA receptors and alterations in the function of GABAA receptors are associated with many neurologic diseases, and GABAA receptors have been clinically targeted by many drugs, such as benzodiazepines and general anesthetics. Extensive studies have revealed a number of intracellular chaperons/interactions for GABAA receptors, providing a protein–protein network in regulating the trafficking and location of GABAA receptors in the brain. Recently, neurexins and neuroligins, two families of transmembrane proteins present at neurological synapses, are implicated as new partners to GABAA receptors. These works shed new light on the synaptic regulation of GABAA receptor activity. Here, we summarized the proteins that were implicated in the function of GABAA receptors, including neurexins and neuroligins.

Keywords

GABAA receptors / synapses / neurexins / neuroligins

Cite this article

Download citation ▾
Bei WU, Chen ZHANG. Neurexins and neuroligins: new partners for GABAA receptors at synapses. Front Biol, 2011, 6(3): 251‒260 https://doi.org/10.1007/s11515-011-1020-2

References

[1]
Absalom N L, Schofield P R, Lewis T M (2009). Pore structure of the Cys-loop ligand-gated ion channels. Neurochem Res, 34(10): 1805–1815
CrossRef Pubmed Google scholar
[2]
Alldred M J, Mulder-Rosi J, Lingenfelter S E, Chen G, Lüscher B (2005). Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J Neurosci, 25(3): 594–603
CrossRef Pubmed Google scholar
[3]
Allison D W, Chervin A S, Gelfand V I, Craig A M (2000). Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci, 20(12): 4545–4554
Pubmed
[4]
Araç D, Boucard A A, Ozkan E, Strop P, Newell E, Südhof T C, Brunger A T (2007). Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron, 56(6): 992–1003
CrossRef Pubmed Google scholar
[5]
Atasoy D, Ertunc M, Moulder K L, Blackwell J, Chung C, Su J, Kavalali E T (2008). Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci, 28(40): 10151–10166
CrossRef Pubmed Google scholar
[6]
Baer K, Essrich C, Benson J A, Benke D, Bluethmann H, Fritschy J M, Lüscher B (1999). Postsynaptic clustering of gamma-aminobutyric acid type A receptors by the gamma3 subunit in vivo. Proc Natl Acad Sci USA, 96(22): 12860–12865
CrossRef Pubmed Google scholar
[7]
Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme J F, Baulac M, Brice A, Bruzzone R, LeGuern E (2001). First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet, 28(1): 46–48
CrossRef Pubmed Google scholar
[8]
Beck M, Brickley K, Wilkinson H L, Sharma S, Smith M, Chazot P L, Pollard S, Stephenson F A (2002). Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J Biol Chem, 277(33): 30079–30090
CrossRef Pubmed Google scholar
[9]
Bedford F K, Kittler J T, Muller E, Thomas P, Uren J M, Merlo D, Wisden W, Triller A, Smart T G, Moss S J (2001). GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci, 4(9): 908–916
CrossRef Pubmed Google scholar
[10]
Blatt G J (2005). GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol, 71: 167–178
CrossRef Pubmed Google scholar
[11]
Boileau A J, Pearce R A, Czajkowski C (2005). Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein. J Neurosci, 25(49): 11219–11230
CrossRef Pubmed Google scholar
[12]
Boucard A A, Chubykin A A, Comoletti D, Taylor P, Südhof T C (2005). A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron, 48(2): 229–236
CrossRef Pubmed Google scholar
[13]
Brejc K, van Dijk W J, Klaassen R V, Schuurmans M, van Der Oost J, Smit A B, Sixma T K (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 411(6835): 269–276
CrossRef Pubmed Google scholar
[14]
Brünig I, Scotti E, Sidler C, Fritschy J M (2002). Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol, 443(1): 43–55
CrossRef Pubmed Google scholar
[15]
Bucan M, Abrahams B S, Wang K, Glessner J T, Herman E I, Sonnenblick L I, Alvarez Retuerto A I, Imielinski M, Hadley D, Bradfield J P, Kim C, Gidaya N B, Lindquist I, Hutman T, Sigman M, Kustanovich V, Lajonchere C M, Singleton A, Kim J, Wassink T H, McMahon W M, Owley T, Sweeney J A, Coon H, Nurnberger J I, Li M, Cantor R M, Minshew N J, Sutcliffe J S, Cook E H, Dawson G, Buxbaum J D, Grant S F, Schellenberg G D, Geschwind D H, Hakonarson H, Gibson G (2009). Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet, 5(6): e1000536
CrossRef Pubmed Google scholar
[16]
Buhr A, Bianchi M T, Baur R, Courtet P, Pignay V, Boulenger J P, Gallati S, Hinkle D J, Macdonald R L, Sigel E (2002). Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Hum Genet, 111(2): 154–160
CrossRef Pubmed Google scholar
[17]
Caraiscos V B, Elliott E M, You-Ten K E, Cheng V Y, Belelli D, Newell J G, Jackson M F, Lambert J J, Rosahl T W, Wafford K A, MacDonald J F, Orser B A (2004). Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA, 101(10): 3662–3667
CrossRef Pubmed Google scholar
[18]
Cederholm J M E, Schofield P R, Lewis T M (2009). Gating mechanisms in Cys-loop receptors. Eur Biophys J, 39(1): 37–49
CrossRef Pubmed Google scholar
[19]
Charych E I, Yu W, Miralles C P, Serwanski D R, Li X, Rubio M, De Blas A L (2004). The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J Neurochem, 90(1): 173–189
CrossRef Pubmed Google scholar
[20]
Chen L, Wang H, Vicini S, Olsen R W (2000). The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA, 97(21): 11557–11562
CrossRef Pubmed Google scholar
[21]
Chen Z W, Chang C S, Leil T A, Olcese R, Olsen R W (2005). GABAA receptor-associated protein regulates GABAA receptor cell-surface number in Xenopus laevis oocytes. Mol Pharmacol, 68(1): 152–159
CrossRef Pubmed Google scholar
[22]
Cherlyn S Y T, Woon P S, Liu J J, Ong W Y, Tsai G C, Sim K (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev, 34(6): 958–977
CrossRef Pubmed Google scholar
[23]
Cherubini E, Gaiarsa J L, Ben-Ari Y (1991). GABA: an excitatory transmitter in early postnatal life. Trends Neurosci, 14(12): 515–519
CrossRef Pubmed Google scholar
[24]
Christie S B, Li R W, Miralles C P, Riquelme R, Yang B Y, Charych E, WendouYu, Daniels S B, Cantino M E, De Blas A L (2002). Synaptic and extrasynaptic GABAA receptor and gephyrin clusters. Prog Brain Res, 136: 157–180
CrossRef Pubmed Google scholar
[25]
Chubykin A A, Atasoy D, Etherton M R, Brose N, Kavalali E T, Gibson J R, Südhof T C (2007). Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron, 54(6): 919–931
CrossRef Pubmed Google scholar
[26]
Chubykin A A, Liu X, Comoletti D, Tsigelny I, Taylor P, Südhof T C (2005). Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J Biol Chem, 280(23): 22365–22374
CrossRef Pubmed Google scholar
[27]
Cockcroft V B, Osguthorpe D J, Barnard E A, Lunt G G (1990). Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins, 8(4): 386–397
CrossRef Pubmed Google scholar
[28]
Collins A L, Ma D, Whitehead P L, Martin E R, Wright H H, Abramson R K, Hussman J P, Haines J L, Cuccaro M L, Gilbert J R, Pericak-Vance M A (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 7(3): 167–174
CrossRef Pubmed Google scholar
[29]
Connolly C N, Wafford K A (2004). The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans, 32(Pt3): 529–534
CrossRef Pubmed Google scholar
[30]
Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire J M, Carmant L, Verner A, Lu W Y, Wang Y T, Rouleau G A (2002). Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet, 31(2): 184–189
CrossRef Pubmed Google scholar
[31]
Craig A M, Kang Y (2007). Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol, 17(1): 43–52
CrossRef Pubmed Google scholar
[32]
Dan B, Boyd S G (2003). Angelman syndrome reviewed from a neurophysiological perspective. The UBE3A-GABRB3 hypothesis. Neuropediatrics, 34(4): 169–176
CrossRef Pubmed Google scholar
[33]
Dean C, Dresbach T (2006). Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci, 29(1): 21–29
CrossRef Pubmed Google scholar
[34]
Dean C, Scholl F G, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003). Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci, 6(7): 708–716
CrossRef Pubmed Google scholar
[35]
Dudanova I, Tabuchi K, Rohlmann A, Südhof T C, Missler M (2007). Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol, 502(2): 261–274
CrossRef Pubmed Google scholar
[36]
Dykens E M, Sutcliffe J S, Levitt P (2004). Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues. Ment Retard Dev Disabil Res Rev, 10(4): 284–291
CrossRef Pubmed Google scholar
[37]
Ernst M, Brauchart D, Boresch S, Sieghart W (2003). Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience, 119(4): 933–943
CrossRef Pubmed Google scholar
[38]
Ernst M, Bruckner S, Boresch S, Sieghart W (2005). Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol, 68(5): 1291–1300
CrossRef Pubmed Google scholar
[39]
Essrich C, Lorez M, Benson J A, Fritschy J M, Lüscher B (1998). Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci, 1(7): 563–571
CrossRef Pubmed Google scholar
[40]
Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, Betz H, Wässle H (2000). Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J Comp Neurol, 427(4): 634–648
CrossRef Pubmed Google scholar
[41]
Fredj N B, Burrone J (2009). A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci, 12(6): 751–758
CrossRef Pubmed Google scholar
[42]
Fritschy J M, Johnson D K, Mohler H, Rudolph U (1998). Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett, 249(2-3): 99–102
CrossRef Pubmed Google scholar
[43]
Fuhrmann J C, Kins S, Rostaing P, El Far O, Kirsch J, Sheng M, Triller A, Betz H, Kneussel M (2002). Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J Neurosci, 22(13): 5393–5402
Pubmed
[44]
Gibson J R, Huber K M, Südhof T C (2009). Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci, 29(44): 13883–13897
CrossRef Pubmed Google scholar
[45]
Giesemann T, Schwarz G, Nawrotzki R, Berhörster K, Rothkegel M, Schlüter K, Schrader N, Schindelin H, Mendel R R, Kirsch J, Jockusch B M (2003). Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci, 23(23): 8330–8339
Pubmed
[46]
Giustetto M, Kirsch J, Fritschy J M, Cantino D, Sassoè-Pognetto M (1998). Localization of the clustering protein gephyrin at GABAergic synapses in the main olfactory bulb of the rat. J Comp Neurol, 395(2): 231–244
CrossRef Pubmed Google scholar
[47]
Goldstein P A, Elsen F P, Ying S W, Ferguson C, Homanics G E, Harrison N L (2002). Prolongation of hippocampal miniature inhibitory postsynaptic currents in mice lacking the GABA(A) receptor alpha1 subunit. J Neurophysiol, 88(6): 3208–3217
CrossRef Pubmed Google scholar
[48]
Gonzalez-Burgos G, Hashimoto T, Lewis D A (2010). Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep, 12(4): 335–344
CrossRef Pubmed Google scholar
[49]
Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss S J, Hirata M (2005). Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Mol Cell Neurosci, 30(2): 197–206
CrossRef Pubmed Google scholar
[50]
Graf E R, Zhang X, Jin S X, Linhoff M W, Craig A M (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 119(7): 1013–1026
CrossRef Pubmed Google scholar
[51]
Guidotti A, Auta J, Davis J M, Dong E, Grayson D R, Veldic M, Zhang X, Costa E (2005). GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl), 180(2): 191–205
CrossRef Pubmed Google scholar
[52]
Harvey K, Duguid I C, Alldred M J, Beatty S E, Ward H, Keep N H, Lingenfelter S E, Pearce B R, Lundgren J, Owen M J, Smart T G, Lüscher B, Rees M I, Harvey R J (2004). The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci, 24(25): 5816–5826
CrossRef Pubmed Google scholar
[53]
Herd M B, Haythornthwaite A R, Rosahl T W, Wafford K A, Homanics G E, Lambert J J, Belelli D (2008). The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J Physiol, 586(4): 989–1004
CrossRef Pubmed Google scholar
[54]
Hoon M, Bauer G, Fritschy J M, Moser T, Falkenburger B H, Varoqueaux F (2009). Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci, 29(25): 8039–8050
CrossRef Pubmed Google scholar
[55]
Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof T C (1995). Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell, 81(3): 435–443
CrossRef Pubmed Google scholar
[56]
Ichtchenko K, Nguyen T, Südhof T C (1996). Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem, 271(5): 2676–2682
CrossRef Pubmed Google scholar
[57]
Jacob T C, Bogdanov Y D, Magnus C, Saliba R S, Kittler J T, Haydon P G, Moss S J (2005). Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci, 25(45): 10469–10478
CrossRef Pubmed Google scholar
[58]
Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein O K (2002). A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 59(7): 1137–1141
CrossRef Pubmed Google scholar
[59]
Kim H G, Kishikawa S, Higgins A W, Seong I S, Donovan D J, Shen Y, Lally E, Weiss L A, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris D J, Noens I, Pauls D L, Daly M J, MacDonald M E, Morton C C, Quade B J, Gusella J F (2008). Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet, 82(1): 199–207
CrossRef Pubmed Google scholar
[60]
Kins S, Betz H, Kirsch J (2000). Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci, 3(1): 22–29
CrossRef Pubmed Google scholar
[61]
Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O’Donovan M C, Erdogan F, Owen M J, Ropers H H, Ullmann R (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet, 17(3): 458–465
CrossRef Pubmed Google scholar
[62]
Kirsch J, Betz H (1995). The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci, 15(6): 4148–4156
Pubmed
[63]
Kirsch J, Langosch D, Prior P, Littauer U Z, Schmitt B, Betz H (1991). The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem, 266(33): 22242–22245
Pubmed
[64]
Kittler J T, Delmas P, Jovanovic J N, Brown D A, Smart T G, Moss S J (2000). Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci, 20(21): 7972–7977
Pubmed
[65]
Kittler J T, Thomas P, Tretter V, Bogdanov Y D, Haucke V, Smart T G, Moss S J (2004). Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci USA, 101(34): 12736–12741
CrossRef Pubmed Google scholar
[66]
Kneussel M, Brandstätter J H, Laube B, Stahl S, Müller U, Betz H (1999). Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci, 19(21): 9289–9297
Pubmed
[67]
Kneussel M, Haverkamp S, Fuhrmann J C, Wang H, Wässle H, Olsen R W, Betz H (2000). The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci USA, 97(15): 8594–8599
CrossRef Pubmed Google scholar
[68]
Lalande M, Calciano M A (2007). Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci, 64(7-8): 947–960
CrossRef Pubmed Google scholar
[69]
Leil T A, Chen Z W, Chang C S, Olsen R W (2004). GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci, 24(50): 11429–11438
CrossRef Pubmed Google scholar
[70]
Lester H A, Dibas M I, Dahan D S, Leite J F, Dougherty D A (2004). Cys-loop receptors: new twists and turns. Trends Neurosci, 27(6): 329–336
CrossRef Pubmed Google scholar
[71]
Lisé M F, El-Husseini A (2006). The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci, 63(16): 1833–1849
CrossRef Pubmed Google scholar
[72]
Lüscher B, Keller C A (2004). Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther, 102(3): 195–221
CrossRef Pubmed Google scholar
[73]
Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T, Takai Y (1998). Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun, 243(1): 86–89
CrossRef Pubmed Google scholar
[74]
Marshall C R, Noor A, Vincent J B, Lionel A C, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars C E, Vos Y J, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons C A, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer S W (2008). Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet, 82(2): 477–488
CrossRef Pubmed Google scholar
[75]
Maximov A, Tang J, Yang X, Pang Z P, Südhof T C (2009). Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science, 323(5913): 516–521
CrossRef Pubmed Google scholar
[76]
Meyer G, Kirsch J, Betz H, Langosch D (1995). Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron, 15(3): 563–572
CrossRef Pubmed Google scholar
[77]
Missler M, Fernandez-Chacon R, Südhof T C (1998). The making of neurexins. J Neurochem, 71(4): 1339–1347
CrossRef Pubmed Google scholar
[78]
Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer R E, Gottmann K, Südhof T C (2003). Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 423(6943): 939–948
CrossRef Pubmed Google scholar
[79]
Miyazawa A, Fujiyoshi Y, Unwin N (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature, 423(6943): 949–955
CrossRef Pubmed Google scholar
[80]
Need A C, Ge D, Weale M E, Maia J, Feng S, Heinzen E L, Shianna K V, Yoon W, Kasperaviciūte D, Gennarelli M, Strittmatter W J, Bonvicini C, Rossi G, Jayathilake K, Cola P A, McEvoy J P, Keefe R S, Fisher E M, St Jean P L, Giegling I, Hartmann A M, Möller H J, Ruppert A, Fraser G, Crombie C, Middleton L T, St Clair D, Roses A D, Muglia P, Francks C, Rujescu D, Meltzer H Y, Goldstein D B (2009). A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet, 5(2): e1000373
CrossRef Pubmed Google scholar
[81]
Nguyen T, Südhof T C (1997). Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem, 272(41): 26032–26039
CrossRef Pubmed Google scholar
[82]
Nusser Z, Roberts J D, Baude A, Richards J G, Sieghart W, Somogyi P (1995). Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur J Neurosci, 7(4): 630–646
CrossRef Pubmed Google scholar
[83]
Nusser Z, Sieghart W, Somogyi P (1998). Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci, 18(5): 1693–1703
Pubmed
[84]
Nutt D J, Malizia A L (2001). New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry, 179(5): 390–396
CrossRef Pubmed Google scholar
[85]
Nymann-Andersen J, Wang H, Chen L, Kittler J T, Moss S J, Olsen R W (2002b). Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors. J Neurochem, 80(5): 815–823
CrossRef Pubmed Google scholar
[86]
Nymann-Andersen J, Wang H, Olsen R W (2002a). Biochemical identification of the binding domain in the GABA(A) receptor-associated protein (GABARAP) mediating dimer formation. Neuropharmacology, 43(4): 476–481
CrossRef Pubmed Google scholar
[87]
O’Sullivan G A, Kneussel M, Elazar Z, Betz H (2005). GABARAP is not essential for GABA receptor targeting to the synapse. Eur J Neurosci, 22(10): 2644–2648
CrossRef Pubmed Google scholar
[88]
Ortinski P I, Lu C, Takagaki K, Fu Z, Vicini S (2004). Expression of distinct alpha subunits of GABAA receptor regulates inhibitory synaptic strength. J Neurophysiol, 92(3): 1718–1727
CrossRef Pubmed Google scholar
[89]
Paarmann I, Schmitt B, Meyer B, Karas M, Betz H (2006). Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants. J Biol Chem, 281(46): 34918–34925
CrossRef Pubmed Google scholar
[90]
Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey R J, Harvey K, O’Sullivan G A, Laube B, Hülsmann S, Geiger J R P, Betz H (2007). Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J, 26(17): 3888–3899
CrossRef Pubmed Google scholar
[91]
Petryshen T L, Middleton F A, Tahl A R, Rockwell G N, Purcell S, Aldinger K A, Kirby A, Morley C P, McGann L, Gentile K L, Waggoner S G, Medeiros H M, Carvalho C, Macedo A, Albus M, Maier W, Trixler M, Eichhammer P, Schwab S G, Wildenauer D B, Azevedo M H, Pato M T, Pato C N, Daly M J, Sklar P (2005). Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry, 10(12): 1074–1088, 1057
CrossRef Pubmed Google scholar
[92]
Pfeiffer F, Graham D, Betz H (1982). Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem, 257(16): 9389–9393
Pubmed
[93]
Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000). GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 101(4): 815–850
CrossRef Pubmed Google scholar
[94]
Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher S W, Betz H, Harvey R J, Brose N, Zhang W, Varoqueaux F (2009). Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron, 63(5): 628–642
CrossRef Pubmed Google scholar
[95]
Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J, (1992). Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron, 8(6): 1161–1170
CrossRef Pubmed Google scholar
[96]
Rivera C, Voipio J, Payne J A, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999). The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 397(6716): 251–255
CrossRef Pubmed Google scholar
[97]
Roberts E, Frankel S (1950). gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem, 187(1): 55–63
Pubmed
[98]
Rujescu D, Ingason A, Cichon S, Pietiläinen O P, Barnes M R, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason P I, Hardarsson G, Jonsdottir G A, Gustafsson O, Fossdal R, Giegling I, Möller H J, Hartmann A M, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen O A, Hansen T, Werge T, Kiemeney L A, Franke B, Veltman J, Buizer-Voskamp J E, GROUP Investigators, Sabatti C, Ophoff R A, Rietschel M, Nöthen M M, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier D A, (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet, 18(5): 988–996
Pubmed
[99]
Rupprecht R, Eser D, Zwanzger P, Möller H J (2006). GABAA receptors as targets for novel anxiolytic drugs. World J Biol Psychiatry, 7(4): 231–237
CrossRef Pubmed Google scholar
[100]
Sassoè-Pognetto M, Panzanelli P, Sieghart W, Fritschy J M (2000). Colocalization of multiple GABA(A) receptor subtypes with gephyrin at postsynaptic sites. J Comp Neurol, 420(4): 481–498
CrossRef Pubmed Google scholar
[101]
Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell, 101(6): 657–669
CrossRef Pubmed Google scholar
[102]
Schmitz C, van Kooten I A J, Hof P R, van Engeland H, Patterson P H, Steinbusch H W M (2005). Autism: neuropathology, alterations of the GABAergic system, and animal models. Int Rev Neurobiol, 71: 1–26
CrossRef Pubmed Google scholar
[103]
Shah A K, Tioleco N M, Nolan K, Locker J, Groh K, Villa C, Stopkova P, Pedrosa E, Lachman H M (2010). Rare NRXN1 promoter variants in patients with schizophrenia. Neurosci Lett, 475(2): 80–84
CrossRef Pubmed Google scholar
[104]
Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Höger H, Adamiker D (1999). Structure and subunit composition of GABA(A) receptors. Neurochem Int, 34(5): 379–385
CrossRef Pubmed Google scholar
[105]
Sieghart W, Sperk G (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem, 2(8): 795–816
CrossRef Pubmed Google scholar
[106]
Smith G B, Olsen R W (1995). Functional domains of GABAA receptors. Trends Pharmacol Sci, 16(5): 162–168
CrossRef Pubmed Google scholar
[107]
Smith M J, Pozo K, Brickley K, Stephenson F A (2006). Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J Biol Chem, 281(37): 27216–27228
CrossRef Pubmed Google scholar
[108]
Solís-Añez E, Delgado-Luengo W, Hernández M L (2007). Autism, chromosome 15 and the GAbaergic dysfunction hypothesis. Invest Clin, 48(4): 529–541 (in Spanish) PMID:18271397
[109]
Song J Y, Ichtchenko K, Südhof T C, Brose N (1999). Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA, 96(3): 1100–1105
CrossRef Pubmed Google scholar
[110]
Südhof T C (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215): 903–911
CrossRef Pubmed Google scholar
[111]
Szatmari P, Paterson A D, Zwaigenbaum L, Roberts W, Brian J, Liu X Q, Vincent J B, Skaug J L, Thompson A P, Senman L, Feuk L, Qian C, Bryson S E, Jones M B, Marshall C R, Scherer S W, Vieland V J, Bartlett C, Mangin L V, Goedken R, Segre A, Pericak-Vance M A, Cuccaro M L, Gilbert J R, Wright H H, Abramson R K, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum J D, Davis K L, Hollander E, Silverman J M, Hallmayer J, Lotspeich L, Sutcliffe J S, Haines J L, Folstein S E, Piven J, Wassink T H, Sheffield V, Geschwind D H, Bucan M, Brown W T, Cantor R M, Constantino J N, Gilliam T C, Herbert M, Lajonchere C, Ledbetter D H, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse C A, Spence S, State M, Tanzi R E, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon W M, Minshew N, Munson J, Korvatska E, Rodier P M, Schellenberg G D, Smith M, Spence M A, Stodgell C, Tepper P G, Wijsman E M, Yu C E, Rogé B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck S M, Schuster C, Poustka F, Bölte S, Feineis-Matthews S, Herbrecht E, Schmötzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F, Koop F, Langemeijer M, Langemeijer M, Hijmans C, Hijimans C, Staal W G, Baird G, Bolton P F, Rutter M L, Weisblatt E, Green J, Aldred C, Wilkinson J A, Pickles A, Le Couteur A, Berney T, McConachie H, Bailey A J, Francis K, Honeyman G, Hutchinson A, Parr J R, Wallace S, Monaco A P, Barnby G, Kobayashi K, Lamb J A, Sousa I, Sykes N, Cook E H, Guter S J, Leventhal B L, Salt J, Lord C, Corsello C, Hus V, Weeks D E, Volkmar F, Tauber M, Fombonne E, Shih A, Meyer K J, and the Autism Genome Project Consortium (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet, 39(3): 319–328
CrossRef Pubmed Google scholar
[112]
Tabuchi K, Südhof T C (2002). Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics, 79(6): 849–859
CrossRef Pubmed Google scholar
[113]
Tanida I, Ueno T, Kominami E (2004). LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 36(12): 2503–2518
CrossRef Pubmed Google scholar
[114]
Taniguchi H, Gollan L, Scholl F G, Mahadomrongkul V, Dobler E, Limthong N, Peck M, Aoki C, Scheiffele P (2007). Silencing of neuroligin function by postsynaptic neurexins. J Neurosci, 27(11): 2815–2824
CrossRef Pubmed Google scholar
[115]
Todd A J, Watt C, Spike R C, Sieghart W (1996). Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci, 16(3): 974–982
Pubmed
[116]
Twelvetrees A E, Yuen E Y, Arancibia-Carcamo I L, MacAskill A F, Rostaing P, Lumb M J, Humbert S, Triller A, Saudou F, Yan Z, Kittler J T (2010). Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron, 65(1): 53–65
CrossRef Pubmed Google scholar
[117]
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100–113
CrossRef Pubmed Google scholar
[118]
Unwin N (2005). Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol, 346(4): 967–989
CrossRef Pubmed Google scholar
[119]
Ushkaryov Y A, Petrenko A G, Geppert M, Südhof T C (1992). Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science, 257(5066): 50–56
CrossRef Pubmed Google scholar
[120]
Varoqueaux F, Aramuni G, Rawson R L, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof T C, Brose N (2006). Neuroligins determine synapse maturation and function. Neuron, 51(6): 741–754
CrossRef Pubmed Google scholar
[121]
Varoqueaux F, Jamain S, Brose N (2004). Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol, 83(9): 449–456
CrossRef Pubmed Google scholar
[122]
Vithlani M, Moss S J (2009). The role of GABAAR phosphorylation in the construction of inhibitory synapses and the efficacy of neuronal inhibition. Biochem Soc Trans, 37(Pt 6): 1355–1358
CrossRef Pubmed Google scholar
[123]
Wallace R H, Marini C, Petrou S, Harkin L A, Bowser D N, Panchal R G, Williams D A, Sutherland G R, Mulley J C, Scheffer I E, Berkovic S F (2001). Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 28(1): 49–52
CrossRef Pubmed Google scholar
[124]
Walsh T, McClellan J M, McCarthy S E, Addington A M, Pierce S B, Cooper G M, Nord A S, Kusenda M, Malhotra D, Bhandari A, Stray S M, Rippey C F, Roccanova P, Makarov V, Lakshmi B, Findling R L, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler E E, Meltzer P S, Nelson S F, Singleton A B, Lee M K, Rapoport J L, King M C, Sebat J (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875): 539–543
CrossRef Pubmed Google scholar
[125]
Wang H, Bedford F K, Brandon N J, Moss S J, Olsen R W (1999). GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature, 397(6714): 69–72
CrossRef Pubmed Google scholar
[126]
Wei W, Zhang N, Peng Z, Houser C R, Mody I (2003). Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci, 23(33): 10650–10661
Pubmed
[127]
Whatley V J, Mihic S J, Allan A M, McQuilkin S J, Harris R A (1994). Gamma-aminobutyric acidA receptor function is inhibited by microtubule depolymerization. J Biol Chem, 269(30): 19546–19552
Pubmed
[128]
Whiting P J (1999). The GABA-A receptor gene family: new targets for therapeutic intervention. Neurochem Int, 34(5): 387–390
CrossRef Pubmed Google scholar
[129]
Wiśniowiecka-Kowalnik B, Nesteruk M, Peters S U, Xia Z, Cooper M L, Savage S, Amato R S, Bader P, Browning M F, Haun C L, Duda A W 3rd, Cheung S W, Stankiewicz P (2010). Intragenic rearrangements in NRXN1 in three families with autism spectrum disorder, developmental delay, and speech delay. Am J Med Genet B Neuropsychiatr Genet, 153B(5): 983–993
Pubmed
[130]
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S (2001). Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics, 74(3): 408–413
CrossRef Pubmed Google scholar
[131]
Xu J, Pang Z P, Shin O H, Südhof T C (2009). Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci, 12(6): 759–766
CrossRef Pubmed Google scholar
[132]
Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz C E, Sommer S S (2008). Neurexin 1alpha structural variants associated with autism. Neurosci Lett, 438(3): 368–370
CrossRef Pubmed Google scholar
[133]
Zahir F R, Baross A, Delaney A D, Eydoux P, Fernandes N D, Pugh T, Marra M A, Friedman J M (2008). A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1alpha. J Med Genet, 45(4): 239–243
CrossRef Pubmed Google scholar
[134]
Zhang C, Atasoy D, Araç D, Yang X, Fucillo M V, Robison A J, Ko J, Brunger A T, Südhof T C (2010). Neurexins physically and functionally interact with GABA(A) receptors. Neuron, 66(3): 403–416
CrossRef Pubmed Google scholar
[135]
Zhang C, Milunsky J M, Newton S, Ko J, Zhao G, Maher T A, Tager-Flusberg H, Bolliger M F, Carter A S, Boucard A A, Powell C M, Südhof T C (2009). A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci, 29(35): 10843–10854
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program No. 2011CB809102 to C. Z.); and “985” Research Foundation of Peking University (to C. Z.).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(204 KB)

Accesses

Citations

Detail

Sections
Recommended

/