Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants

Ying CAO, Ligeng MA

PDF(309 KB)
PDF(309 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 109-117. DOI: 10.1007/s11515-011-1000-6
REVIEW
REVIEW

Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants

Author information +
History +

Abstract

Histone ubiquitination plays a critical role in the regulation of transcription, and histone H2B monoubiquitination (H2Bub1) is mainly associated with transcriptional activation. Recent studies in yeast, humans, and BoldItalic have revealed the conservation of chromatin modification via H2Bub1 during evolution. Rad6-Bre1 and their homologs are responsible for H2B monoubiquitination in diverse eukaryotic organisms, and the PAF complex is required for H2Bub1 to proceed. H2Bub1 is involved in many developmental processes in yeast, humans, and BoldItalic, and it activates gene transcription by regulating the H3K4 methylation state. Notably, the level of H3K4 methylation is entirely dependent on H2Bub1 in yeast and humans, whereas the H3K4 methylation level of only a small number of genes in BoldItalic is dependent on H2Bub1. In this review, we summarize the enzymes involved in H2B monoubiquitination and deubiquitination, and discuss the biologic functions of H2Bub1 in different organisms. In addition, we focus on recent advances in our understanding of the molecular mechanisms that enable H2Bub1 to perform its function.

Keywords

H2B monoubiquitination / H2B deubiquitination / H3K4 methylation / PAF complex / transcriptional requlation

Cite this article

Download citation ▾
Ying CAO, Ligeng MA. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. Front Biol, 2011, 6(2): 109‒117 https://doi.org/10.1007/s11515-011-1000-6

References

[1]
Briggs S D, Xiao T, Sun Z W, Caldwell J A, Shabanowitz J, Hunt D F, Allis C D, Strahl B D (2002). Gene silencing: trans-histone regulatory pathway in chromatin. Nature, 418(6897): 498
CrossRef Pubmed Google scholar
[2]
Cao Y, Dai Y, Cui S J, Ma L G (2008). Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell, 20: 2586-2602
CrossRef Pubmed Google scholar
[3]
Chandrasekharan M B, Huang F, Chen Y C, Sun Z W (2010b). Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol, 30(13): 3216-3232
CrossRef Pubmed Google scholar
[4]
Chandrasekharan M B, Huang F, Sun Z W (2009). Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci USA, 106(39): 16686-16691
CrossRef Pubmed Google scholar
[5]
Chandrasekharan M B, Huang F, Sun Z W (2010a). Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics, 5(6): 460-468
CrossRef Pubmed Google scholar
[6]
Daniel J A, Torok M S, Sun Z W, Schieltz D, Allis C D, Yates J R 3rd, Grant P A (2004). Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem, 279(3): 1867-1871
CrossRef Pubmed Google scholar
[7]
Dhawan R, Luo H, Foerster A M, Abuqamar S, Du H N, Briggs S D, Scheid O M, Mengiste T (2009). HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell, 21(3): 1000-1019
CrossRef Pubmed Google scholar
[8]
Dover J, Schneider J, Tawiah-Boateng M A, Wood A, Dean K, Johnston M, Shilatifard A (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem, 277(32): 28368-28371
CrossRef Pubmed Google scholar
[9]
Emre N C, Ingvarsdottir K, Wyce A, Wood A, Krogan N J, Henry K W, Li K, Marmorstein R, Greenblatt J F, Shilatifard A, Berger S L (2005). Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell, 17(4): 585-594
CrossRef Pubmed Google scholar
[10]
Espinosa J M (2008). Histone H2B ubiquitination: the cancer connection. Genes Dev, 22(20): 2743-2749
CrossRef Pubmed Google scholar
[11]
Ezhkova E, Tansey W P (2004). Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell, 13(3): 435-442
CrossRef Pubmed Google scholar
[12]
Fleming A B, Kao C F, Hillyer C, Pikaart M, Osley M A (2008). H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell, 31(1): 57-66
CrossRef Pubmed Google scholar
[13]
Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi T M, Maere S, Beemster G T S, Neyt P, Anami S, Robles P, Micol J L, Inzé D, Van Lijsebettens M (2007). The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell, 19(2): 417-432
CrossRef Pubmed Google scholar
[14]
Gardner R G, Nelson Z W, Gottschling D E (2005). Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol, 25(14): 6123-6139
CrossRef Pubmed Google scholar
[15]
Goldknopf I L, Taylor C W, Baum R M, Yeoman L C, Olson M O, Prestayko A W, Busch H (1975). Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem, 250(18): 7182-7187
Pubmed
[16]
Gu X, Jiang D, Wang Y, Bachmair A, He Y (2009). Repression of the floral transition via histone H2B monoubiquitination. Plant J, 57(3): 522-533
CrossRef Pubmed Google scholar
[17]
Hartzog G A, Quan T K (2008). Just the FACTs: histone H2B ubiquitylation and nucleosome dynamics. Mol Cell, 31(1): 2-4
CrossRef Pubmed Google scholar
[18]
Henry K W, Wyce A, Lo W S, Duggan L J, Emre N C T, Kao C F, Pillus L, Shilatifard A, Osley M A, Berger S L (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev, 17(21): 2648-2663
CrossRef Pubmed Google scholar
[19]
Hwang W W, Venkatasubrahmanyam S, Ianculescu A G, Tong A, Boone C, Madhani H D (2003). A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell, 11(1): 261-266
CrossRef Pubmed Google scholar
[20]
Ingvarsdottir K, Krogan N J, Emre N C, Wyce A, Thompson N J, Emili A, Hughes T R, Greenblatt J F, Berger S L (2005). H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol, 25(3): 1162-1172
CrossRef Pubmed Google scholar
[21]
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074-1080
CrossRef Pubmed Google scholar
[22]
Kao C F, Hillyer C, Tsukuda T, Henry K, Berger S, Osley M A (2004). Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev, 18(2): 184-195
CrossRef Pubmed Google scholar
[23]
Kim J, Guermah M, McGinty R K, Lee J S, Tang Z, Milne T A, Shilatifard A, Muir T W, Roeder R G (2009). RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell, 137(3): 459-471
CrossRef Pubmed Google scholar
[24]
Kim J, Hake S B, Roeder R G (2005). The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell, 20(5): 759-770
CrossRef Pubmed Google scholar
[25]
Kornberg R D, Lorch Y (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98(3): 285-294
CrossRef Pubmed Google scholar
[26]
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693-705
CrossRef Pubmed Google scholar
[27]
Krogan N J, Dover J, Wood A, Schneider J, Heidt J, Boateng M A, Dean K, Ryan O W, Golshani A, Johnston M, Greenblatt J F, Shilatifard A (2003). The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell, 11(3): 721-729
CrossRef Pubmed Google scholar
[28]
Laribee R N, Fuchs S M, Strahl B D (2007a). H2B ubiquitylation in transcriptional control: a FACT-finding mission. Genes Dev, 21(7): 737-743
CrossRef Pubmed Google scholar
[29]
Laribee R N, Shibata Y, Mersman D P, Collins S R, Kemmeren P, Roguev A, Weissman J S, Briggs S D, Krogan N J, Strahl B D (2007b). CCR4/NOT complex associates with the proteasome and regulates histone methylation. Proc Natl Acad Sci USA, 104(14): 5836-5841
CrossRef Pubmed Google scholar
[30]
Lee J S, Shukla A, Schneider J, Swanson S K, Washburn M P, Florens L, Bhaumik S R, Shilatifard A (2007). Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell, 131(6): 1084-1096
CrossRef Pubmed Google scholar
[31]
Lee K K, Florens L, Swanson S K, Washburn M P, Workman J L (2005). The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol, 25(3): 1173-1182
CrossRef Pubmed Google scholar
[32]
Li B, Carey M, Workman J L (2007). The role of chromatin during transcription. Cell, 128(4): 707-719
CrossRef Pubmed Google scholar
[33]
Liu Y, Koornneef M, Soppe W J J (2007). The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell, 19(2): 433-444
CrossRef Pubmed Google scholar
[34]
Lolas I B, Himanen K, Grønlund J T, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser K D (2010). The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J, 61(4): 686-697
CrossRef Pubmed Google scholar
[35]
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648): 251-260
CrossRef Pubmed Google scholar
[36]
Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M (2008). Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol, 10(4): 483-488
CrossRef Pubmed Google scholar
[37]
Nakanishi S, Lee J S, Gardner K E, Gardner J M, Takahashi Y H, Chandrasekharan M B, Sun Z W, Osley M A, Strahl B D, Jaspersen S L, Shilatifard A (2009). Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Biol, 186(3): 371-377
CrossRef Pubmed Google scholar
[38]
Ng H H, Dole S, Struhl K (2003). The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem, 278(36): 33625-33628
CrossRef Pubmed Google scholar
[39]
Oh S, Zhang H, Ludwig P, van Nocker S (2004). A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell, 16(11): 2940-2953
CrossRef Pubmed Google scholar
[40]
Osley M A (2004). H2B ubiquitylation: the end is in sight. Biochim Biophys Acta, 1677(1-3): 74-78
Pubmed
[41]
Osley M A (2006). Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomics Proteomics, 5(3): 179-189
CrossRef Pubmed Google scholar
[42]
Osley M A, Fleming A B, Kao C F (2006). Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ, 41: 47-75
CrossRef Pubmed Google scholar
[43]
Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell, 125(4): 703-717
CrossRef Pubmed Google scholar
[44]
Pfluger J, Wagner D (2007). Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol, 10(6): 645-652
CrossRef Pubmed Google scholar
[45]
Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman R D, Eick D, Aylon Y, Oren M, Johnsen S A (2009). CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3¢-end processing. EMBO Rep, 10(8): 894-900PMID:19575011
CrossRef Google scholar
[46]
Robzyk K, Recht J, Osley M A (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science, 287(5452): 501-504
CrossRef Pubmed Google scholar
[47]
Schmitz R J, Tamada Y, Doyle M R, Zhang X, Amasino R M (2009). Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol, 149(2): 1196-1204
CrossRef Pubmed Google scholar
[48]
Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, Hublarova P, Moyal L, Gana-Weisz M, Shiloh Y, Yarden Y, Johnsen S A, Vojtesek B, Berger S L, Oren M (2008). The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev, 22(19): 2664-2676
CrossRef Pubmed Google scholar
[49]
Shukla A, Bhaumik S R (2007). H2B-K123 ubiquitination stimulates RNAPII elongation independent of H3-K4 methylation. Biochem Biophys Res Commun, 359(2): 214-220
CrossRef Pubmed Google scholar
[50]
Sridhar V V, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa P M, Bressan R A, Zhu J K (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 447(7145): 735-738
CrossRef Pubmed Google scholar
[51]
Sun Z W, Allis C D (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature, 418(6893): 104-108
CrossRef Pubmed Google scholar
[52]
Tanny J C, Erdjument-Bromage H, Tempst P, Allis C D (2007). Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev, 21(7): 835-847
CrossRef Pubmed Google scholar
[53]
Turner B M (2002). Cellular memory and the histone code. Cell, 111(3): 285-291
CrossRef Pubmed Google scholar
[54]
Weake V M, Workman J L (2008). Histone ubiquitination: triggering gene activity. Mol Cell, 29(6): 653-663
CrossRef Pubmed Google scholar
[55]
West M H, Bonner W M (1980). Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res, 8(20): 4671-4680
CrossRef Pubmed Google scholar
[56]
Wood A, Krogan N J, Dover J, Schneider J, Heidt J, Boateng M A, Dean K, Golshani A, Zhang Y, Greenblatt J F, Johnston M, Shilatifard A (2003a). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell, 11(1): 267-274
CrossRef Pubmed Google scholar
[57]
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003b). The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem, 278(37): 34739-34742
CrossRef Pubmed Google scholar
[58]
Wyce A, Henry K W, Berger S L (2004). H2B ubiquitylation and de-ubiquitylation in gene activation. Novartis Found Symp, 259: 63-73, discussion 73-77, 163-169
CrossRef Pubmed Google scholar
[59]
Wyce A, Xiao T, Whelan K A, Kosman C, Walter W, Eick D, Hughes T R, Krogan N J, Strahl B D, Berger S L (2007). H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell, 27(2): 275-288
CrossRef Pubmed Google scholar
[60]
Xiao T, Kao C F, Krogan N J, Sun Z W, Greenblatt J F, Osley M A, Strahl B D (2005). Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol, 25(2): 637-651
CrossRef Pubmed Google scholar
[61]
Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen W H (2009). The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 57(2): 279-288
CrossRef Pubmed Google scholar
[62]
Zhang X Y, Varthi M, Sykes S M, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne A W, Berger S L, McMahon S B (2008). The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell, 29(1): 102-111
CrossRef Pubmed Google scholar
[63]
Zhang Y (2003). Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev, 17(22): 2733-2740
CrossRef Pubmed Google scholar
[64]
Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg H G, Krasnov A, Georgieva S G, Schüle R, Takeyama K, Kato S, Tora L, Devys D (2008). A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell, 29(1): 92-101
CrossRef Pubmed Google scholar
[65]
Zhu B, Mandal S S, Pham A D, Zheng Y, Erdjument-Bromage H, Batra S K, Tempst P, Reinberg D (2005a). The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev, 19(14): 1668-1673
CrossRef Pubmed Google scholar
[66]
Zhu B, Zheng Y, Pham A D, Mandal S S, Erdjument-Bromage H, Tempst P, Reinberg D (2005b). Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell, 20(4): 601-611
CrossRef Pubmed Google scholar

Acknowledgments

We thank Dr. Jessica Habashi for critical reading of the manuscript. This work was supported by grants from China MOST 863 project (L.M.), Hebei Province Key Laboratory Program (L.M.), National Science Foundation of China (Y.C.).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(309 KB)

Accesses

Citations

Detail

Sections
Recommended

/