Understanding of stem cells in bone biology and translation into clinical applications

Peng LIU, Zhipeng FAN, Songlin WANG

PDF(211 KB)
PDF(211 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (5) : 396-406. DOI: 10.1007/s11515-010-0930-8
REVIEW
REVIEW

Understanding of stem cells in bone biology and translation into clinical applications

Author information +
History +

Abstract

Developments of stem cell biology provide new approaches for understanding the mechanisms of a number of diseases, including osteoporosis. In this mini-review, we highlight two areas that related to stem cells in bone biology. Recent discovery of the role of osteoclast and their stem cells leads to developing a new approach for treatment of osteoporosis with the initial stimulation of cells in osteoclast lineage and followed by sequentially enhanced bone formation. Stimulation on both sides in bone remodeling is expected to achieve a long term effect on bone formation. For bone regeneration, multiple disciplinary collaborations among bone biologists, stem cell biologists and biomaterial scientists are necessary to successfully develop an integrated stem cell therapy that should include stem cells, suitable scaffolds and bioactive factors/small molecular compounds.

Keywords

Stem cells / bone regeneration / osteoporosis / scaffolds / small molecules

Cite this article

Download citation ▾
Peng LIU, Zhipeng FAN, Songlin WANG. Understanding of stem cells in bone biology and translation into clinical applications. Front Biol, 2010, 5(5): 396‒406 https://doi.org/10.1007/s11515-010-0930-8

References

[1]
Alkhiary Y M, Gerstenfeld L C, Krall E, Westmore M, Sato M, Mitlak B H, Einhorn T A (2005). Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am, 87(4): 731-741
CrossRef Google scholar
[2]
Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science (New York, N. Y), 321: 699-702
[3]
Bedogni A, Bettini G, Totola A, Saia G, Nocini P F (2010). Oral bisphosphonate-associated osteonecrosis of the jaw after implant surgery: a case report and literature review. J Oral Maxillofac Surg, 68(7): 1662-1666
CrossRef Google scholar
[4]
Beloti M M, Bellesini L S, Rosa A L (2005a). Purmorphamine enhances osteogenic activity of human osteoblasts derived from bone marrow mesenchymal cells. Cell Biol Int, 29(7): 537-541
CrossRef Google scholar
[5]
Beloti M M, Bellesini L S, Rosa A L (2005b). The effect of purmorphamine on osteoblast phenotype expression of human bone marrow mesenchymal cells cultured on titanium. Biomaterials, 26(20): 4245-4248
CrossRef Google scholar
[6]
Bennett J H, Joyner C J, Triffitt J T, Owen M E (1991). Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci, 99(Pt 1): 131-139
[7]
Blackwell K A, Raisz L G, Pilbeam C C (2010). Prostaglandins in bone: bad cop, good cop? Trends in endocrinology and metabolism: TEM, 21, 294-301
[8]
Bodine P V (2008). Wnt signaling control of bone cell apoptosis. Cell Res, 18(2): 248-253
CrossRef Google scholar
[9]
Bolós V, Grego-Bessa J, de la Pompa J L (2007). Notch signaling in development and cancer. Endocr Rev, 28(3): 339-363
CrossRef Google scholar
[10]
Bonyadi M, Waldman S D, Liu D, Aubin J E, Grynpas M D, Stanford W L (2003). Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A, 100(10): 5840-5845
[11]
Brown S E, Tong W, Krebsbach P H (2009). The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs, 189(1-4): 256-260
CrossRef Google scholar
[12]
Buckbinder L, Crawford D T, Qi H, Ke H Z, Olson L M, Long K R, Bonnette P C, Baumann A P, Hambor J E, Grasser W A 3rd, Pan L C, Owen T A, Luzzio M J, Hulford C A, Gebhard D F, Paralkar V M, Simmons H A, Kath J C, Roberts W G, Smock S L, Guzman-Perez A, Brown T A, Li M (2007). Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci U S A, 104(25): 10619-10624
CrossRef Google scholar
[13]
Bueno E M, Glowacki J (2009). Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol, 5(12): 685-697
CrossRef Google scholar
[14]
Cameron K O, Lefker B A, Chu-Moyer M Y, Crawford D T, Jardine P D, DeNinno S L, Gilbert S, Grasser W A, Ke H, Lu B, Owen T A, Paralkar V M, Qi H, Scott D O, Thompson D D, Tjoa C M, Zawistoski M P (2006). Discovery of highly selective EP4 receptor agonists that stimulate new bone formation and restore bone mass in ovariectomized rats. Bioorg Med Chem Lett, 16(7): 1799-1802
[15]
Canalis E (2008). Notch signaling in osteoblasts. Sci Signal, 1(17): pe17
CrossRef Google scholar
[16]
Chai G, Zhang Y, Hu X J, Wang M, Liu W, Cui L, Cao Y L (2006). Repair alveolar cleft bone defects with bone marrow stromal cells. Zhonghua Zhengxing Waike Zazhi, 22, 409-411
[17]
Chen Y, Alman B A (2009). Wnt pathway, an essential role in bone regeneration. J Cell Biochem, 106(3): 353-362
CrossRef Google scholar
[18]
Cipriano C A, Issack P S, Shindle L, Werner C M, Helfet D L, Lane J M (2009). Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS J, 5(2): 149-153
CrossRef Google scholar
[19]
Cunningham V J, D'Apice M R, Licata N, Novelli G, Cundy T (2010). Skeletal phenotype of mandibuloacral dysplasia associated with mutations in ZMPSTE24. Bone, 47(3): 591-597
[20]
Daley G Q (2010). Stem cells: roadmap to the clinic. J Clin Invest, 120(1): 8-10
CrossRef Google scholar
[21]
De Kok I J, Hicok K C, Padilla R J, Young R G, Cooper L F (2006). Effect of vitamin D pretreatment of human mesenchymal stem cells on ectopic bone formation. J Oral Implantol, 32(3): 103-109
CrossRef Google scholar
[22]
Delmas P D, Vergnaud P, Arlot M E, Pastoureau P, Meunier P J, Nilssen M H (1995). The anabolic effect of human PTH (1-34) on bone formation is blunted when bone resorption is inhibited by the bisphosphonate tiludronate—is activated resorption a prerequisite for the in vivo effect of PTH on formation in a remodeling system? Bone, 16(6): 603-610
[23]
Derubeis A R, Mastrogiacomo M, Cancedda R, Quarto R (2003). Osteogenic potential of rat spleen stromal cells. Eur J Cell Biol, 82(4): 175-181
CrossRef Google scholar
[24]
Ding G, Liu Y, An Y, Zhang C, Shi S, Wang W, Wang S (2010). Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs, 191(5): 357-364
CrossRef Google scholar
[25]
Duailibi M T, Duailibi S E, Young C S, Bartlett J D, Vacanti J P, Yelick P C (2004). Bioengineered teeth from cultured rat tooth bud cells. J Dent Res, 83(7): 523-528
CrossRef Google scholar
[26]
Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, David K, Yang P, Chen J (2010). Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cellular Physiol, DOI: 10.1002/jcp.22316
CrossRef Google scholar
[27]
Elçin Y M, Inanç B, Elçin A E (2010). Human embryonic stem cell differentiation on periodontal ligament fibroblasts. Methods Mol Biol, 584: 269-281
[28]
Fang D, Seo B M, Liu Y, Sonoyama W, Yamaza T, Zhang C, Wang S, Shi S (2007). Transplantation of mesenchymal stem cells is an optimal approach for plastic surgery. Stem cells, (Dayton, Ohio), 25, 1021-1028
[29]
Ferrari S (2009). [Bone remodeling: new therapeutic approaches]. Rev Med Suisse, 5(207): 1325-1328
[30]
Fracon R N, Teófilo J M, Satin R B, Lamano T (2008). Prostaglandins and bone: potential risks and benefits related to the use of nonsteroidal anti-inflammatory drugs in clinical dentistry. J Oral Sci, 50(3): 247-252
CrossRef Google scholar
[31]
Friedenstein A J, Chailakhjan R K, Lalykina K S (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 3(4): 393-403
[32]
Friedenstein A J, Petrakova K V, Kurolesova A I, Frolova G P (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6(2): 230-247
CrossRef Google scholar
[33]
Friedenstein A J, Piatetzky-Shapiro I I, Petrakova K V (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 16(3): 381-390
[34]
Gronthos S, Mankani M, Brahim J, Robey P G, Shi S (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 97(25): 13625-13630
CrossRef Google scholar
[35]
Heitz-Mayfield L J, Lang N P (2004). Antimicrobial treatment of peri-implant diseases. Int J Oral Maxillofac Implants, 19(Suppl): 128-139
[36]
Hoeppner L H, Secreto F J, Westendorf J J (2009). Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets, 13(4): 485-496
CrossRef Google scholar
[37]
Holmes C, Khan T S, Owen C, Ciliberti N, Grynpas M D, Stanford W L (2007). Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J Bone Miner Res, 22(9): 1373-1386
CrossRef Google scholar
[38]
Horwitz E M, Gordon P L, Koo W K, Marx J C, Neel M D, McNall R Y, Muul L, Hofmann T (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A, 99(13): 8932-8937
CrossRef Google scholar
[39]
Huang K Y, Chang J K, Ling S Y, Endo N, Takahashi H E (2000). Epidemiology of cervical and trochanteric fractures of the proximal femur in 1996 in Kaohsiung City, Taiwan. J Bone Miner Metab, 18(2): 89-95
CrossRef Google scholar
[40]
Itasaki N, Hoppler S (2010). Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn, 239(1): 16-33
[41]
Jethva R, Otsuru S, Dominici M, Horwitz E M (2009). Cell therapy for disorders of bone. Cytotherapy, 11(1): 3-17
[42]
Johnson M L (2004). The high bone mass family—the role of Wnt/Lrp5 signaling in the regulation of bone mass. J Musculoskelet Neuronal Interact, 4(2): 135-138
[43]
Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, Havens A, Schneider A, Ge C, Franceschi R T, McCauley L K, Krebsbach P H, Taichman R S (2008). Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells, 26(8): 2042-2051
[44]
Kaback L A, Soung Y, Naik A, Geneau G, Schwarz E M, Rosier R N, O’Keefe R J, Drissi H (2008). Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem, 105(1): 219-226
[45]
Kärner E, Unger C, Cerny R, Ahrlund-Richter L, Ganss B, Dilber M S, Wendel M (2009). Differentiation of human embryonic stem cells into osteogenic or hematopoietic lineages: a dose-dependent effect of osterix over-expression. J Cell Physiol, 218(2): 323-333
[46]
Karsdal M A, Neutzsky-Wulff A V, Dziegiel M H, Christiansen C, Henriksen K (2008). Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun, 366(2): 483-488
[47]
Katoh M (2007). Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev, 3(1): 30-38
[48]
Khan A A, Sándor G K, Dore E, Morrison A D, Alsahli M, Amin F, Peters E, Hanley D A, Chaudry S R, Lentle B, Dempster D W, Glorieux F H, Neville A J, Talwar R M, Clokie C M, Mardini M A, Paul T, Khosla S, Josse R G, Sutherland S, Lam D K, Carmichael R P, Blanas N, Kendler D, Petak S, Ste-Marie L G, Brown J, Evans A W, Rios L, Compston J E, and the Canadian Taskforce on Osteonecrosis of the Jaw (2009). Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol, 36(3): 478-490
[49]
Kim S, Kim S S, Lee S H, Eun Ahn S, Gwak S J, Song J H, Kim B S, Chung H M (2008). In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials, 29(8): 1043-1053
[50]
Klüppel M, Wrana J L (2005). Turning it up a Notch: cross-talk between TGF beta and Notch signaling. Bioessays, 27(2): 115-118
CrossRef Google scholar
[51]
Koh A J, Demiralp B, Neiva K G, Hooten J, Nohutcu R M, Shim H, Datta N S, Taichman R S, McCauley L K (2005). Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology, 146(11): 4584-4596
CrossRef Google scholar
[52]
Kubota T, Michigami T, Ozono K (2009). Wnt signaling in bone metabolism. J Bone Miner Metab, 27(3): 265-271
CrossRef Google scholar
[53]
Lee K W, Yook J Y, Son M Y, Kim M J, Koo D B, Han Y M, Cho Y S (2010). Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev, 19(4): 557-568
CrossRef Google scholar
[54]
Li F, Bronson S, Niyibizi C (2010). Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem, 109(4): 643-652
CrossRef Google scholar
[55]
Li M, Ke H Z, Qi H, Healy D R, Li Y, Crawford D T, Paralkar V M, Owen T A, Cameron K O, Lefker B A, Brown T A, Thompson D D (2003). A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res, 18(11): 2033-2042
CrossRef Google scholar
[56]
Li M, Thompson D D, Paralkar V M (2007). Prostaglandin E(2) receptors in bone formation. Int Orthop, 31(6): 767-772
CrossRef Google scholar
[57]
Liu B, Wang J, Chan K M, Tjia W M, Deng W, Guan X, Huang J D, Li K M, Chau P Y, Chen D J, Pei D, Pendas A M, Cadiñanos J, López-Otín C, Tse H F, Hutchison C, Chen J, Cao Y, Cheah K S, Tryggvason K, Zhou Z (2005). Genomic instability in laminopathy-based premature aging. Nat Med, 11(7): 780-785
[58]
Liu X, Pettway G J, McCauley L K, Ma P X (2007). Pulsatile release of parathyroid hormone from an implantable delivery system. Biomaterials, 28(28): 4124-4131
CrossRef Google scholar
[59]
Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold P M, Gronthos S, Shi S, Wang S (2008). Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4): 1065-1073
CrossRef Google scholar
[60]
Luo L Z, Xu L (2005). Study on direct economic-burden and its risk factors of osteoporotic hip fracture. Zhonghua Liuxingbingxue Zazhi, 26, 669-672
[61]
Mahmood A, Harkness L, Schrøder H D, Abdallah B M, Kassem M (2010). Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res, 25(6): 1216-1233
CrossRef Google scholar
[62]
Marsell R, Jonsson K B, Cho T J, Einhorn T A, Ohlsson C, Schipani E (2007). Mice expressing a constitutively active PTH/PTHrP receptor in osteoblasts show reduced callus size but normal callus morphology during fracture healing. Acta Orthop, 78(1): 39-45
CrossRef Google scholar
[63]
Martin T J, Seeman E (2008). Bone remodelling: its local regulation and the emergence of bone fragility. Best Prac Res, 22, 701-722
[64]
Martin T, Gooi J H, Sims N A (2009). Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr, 19(1): 73-88
[65]
Mendes S C, Tibbe J M, Veenhof M, Both S, Oner F C, van Blitterswijk C A, de Bruijn J D (2004). Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med, 15(10): 1123-1128
CrossRef Google scholar
[66]
Méndez-Ferrer S, Michurina T V, Ferraro F, Mazloom A R, Macarthur B D, Lira S A, Scadden D T, Ma’ayan A, Enikolopov G N, Frenette P S (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308): 829-834
CrossRef Google scholar
[67]
Miura M, Gronthos S, Zhao M, Lu B, Fisher L W, Robey P G, Shi S (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 100(10): 5807-5812
CrossRef Google scholar
[68]
Miura Y, Miura M, Gronthos S, Allen M R, Cao C, Uveges T E, Bi Y, Ehirchiou D, Kortesidis A, Shi S, Zhang L (2005). Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc Natl Acad Sci U S A, 102(39): 14022-14027
CrossRef Google scholar
[69]
Mizoguchi F, Izu Y, Hayata T, Hemmi H, Nakashima K, Nakamura T, Kato S, Miyasaka N, Ezura Y, Noda M (2010). Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem, 109(5): 866-875
[70]
Mukherjee S, Raje N, Schoonmaker J A, Liu J C, Hideshima T, Wein M N, Jones D C, Vallet S, Bouxsein M L, Pozzi S, Chhetri S, Seo Y D, Aronson J P, Patel C, Fulciniti M, Purton L E, Glimcher L H, Lian J B, Stein G, Anderson K C, Scadden D T (2008). Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest, 118(2): 491-504
[71]
Murray P E, Garcia-Godoy F (2004). Stem cell responses in tooth regeneration. Stem Cells Dev, 13(3): 255-262
CrossRef Google scholar
[72]
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 26(1): 101-106
CrossRef Google scholar
[73]
Ohazama A, Courtney J M, Tucker A S, Naito A, Tanaka S, Inoue J, Sharpe P T (2004). Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn, 229(1): 131-135
CrossRef Google scholar
[74]
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903): 949-953
CrossRef Google scholar
[75]
Paralkar V M, Borovecki F, Ke H Z, Cameron K O, Lefker B, Grasser W A, Owen T A, Li M, DaSilva-Jardine P, Zhou M, Dunn R L, Dumont F, Korsmeyer R, Krasney P, Brown T A, Plowchalk D, Vukicevic S, Thompson D D (2003). An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A, 100(11): 6736-6740
CrossRef Google scholar
[76]
Park S H, Wang H L (2005). Implant reversible complications: classification and treatments. Implant Dent, 14(3): 211-220
CrossRef Google scholar
[77]
Raaijmakers M H, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker J A, Ebert B L, Al-Shahrour F, Hasserjian R P, Scadden E O, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens J M, Scadden D T (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290): 852-857
CrossRef Google scholar
[78]
Raisz L G (1999). Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis and cartilage/OARS. Osteoarthritis Research Society, 7: 419-421
CrossRef Google scholar
[79]
Raisz L G (2005). Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest, 115(12): 3318-3325
CrossRef Google scholar
[80]
Rivas D, Li W, Akter R, Henderson J E, Duque G (2009). Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontology, 64A, 1015-1024
[81]
Rowe D, Lichtler A (2002). A strategy for identifying osteoporosis risk genes. Endocrine, 17(1): 67-75
CrossRef Google scholar
[82]
Rozen N, Lewinson D, Bick T, Jacob Z C, Stein H, Soudry M (2007). Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48. Bone, 41(3): 437-445
[83]
Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey P G, Riminucci M, Bianco P (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2): 324-336
[84]
Sahlgren C, Lendahl U (2006). Notch signaling and its integration with other signaling mechanisms. Regen Med, 1(2): 195-205
CrossRef Google scholar
[85]
Secreto F J, Hoeppner L H, Westendorf J J (2009). Wnt signaling during fracture repair. Curr Osteoporos Rep, 7(2): 64-69
CrossRef Google scholar
[86]
Seo B M, Miura M, Gronthos S, Bartold P M, Batouli S, Brahim J, Young M, Robey P G, Wang C Y, Shi S (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429): 149-155
CrossRef Google scholar
[87]
Shi S, Bartold P M, Miura M, Seo B M, Robey P G, Gronthos S (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res, 8(3): 191-199
CrossRef Google scholar
[88]
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B M, Zhang C, Liu H, Gronthos S, Wang C Y, Wang S, Shi S (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1: e79
CrossRef Google scholar
[89]
Stevenson K, McGlynn L, Shiels P G (2009). Stem cells: outstanding potential and outstanding questions. Scott Med J, 54(4): 35-37
[90]
Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y (2007). Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells, 25(7): 1610-1617
CrossRef Google scholar
[91]
Takada I, Kouzmenko A P, Kato S (2009). Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol, 5(8): 442-447
CrossRef Google scholar
[92]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872
[93]
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676
[94]
Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, Iida K, Kunisada T, Shibata T, Yamanaka S, Tezuka K (2010). Dental pulp cells for induced pluripotent stem cell banking. J Dent Res, 89(8): 773-778
CrossRef Google scholar
[95]
Tamura M, Nemoto E, Sato M M, Nakashima A, Shimauchi H (2010). Role of the Wnt signaling pathway in bone and tooth. Frontiers in bioscience (Elite edition), 2: 1405-1413
[96]
Tanaka M, Sakai A, Uchida S, Tanaka S, Nagashima M, Katayama T, Yamaguchi K, Nakamura T (2004). Prostaglandin E2 receptor (EP4) selective agonist (ONO-4819.CD) accelerates bone repair of femoral cortex after drill-hole injury associated with local upregulation of bone turnover in mature rats. Bone, 34(6): 940-948
[97]
Thesleff I (2003). Developmental biology and building a tooth. Quintessence Int, 34(8): 613-620
[98]
Thyagarajan B, Scheyhing K, Xue H, Fontes A, Chesnut J, Rao M, Lakshmipathy U (2009). A single EBV-based vector for stable episomal maintenance and expression of GFP in human embryonic stem cells. Regen Med, 4(2): 239-250
CrossRef Google scholar
[99]
Tong W, Brown S E, Krebsbach P H (2007). Human Embryonic Stem Cells Undergo Osteogenic Differentiation in Human Bone Marrow Stromal Cell Microenvironments. J Stem Cells, 2, 139-147
[100]
Van den Wyngaert T, Huizing M T, Vermorken J B (2006). Bisphosphonates and osteonecrosis of the jaw: cause and effect or a post hoc fallacy? Ann Oncol, 17(8): 1197-1204
CrossRef Google scholar
[101]
Vassiliou V, Tselis N, Kardamakis D (2010). Osteonecrosis of the jaws: clinicopathologic and radiologic characteristics, preventive and therapeutic strategies. Strahlenther Onkol, 186(7): 367-373
CrossRef Google scholar
[102]
Walker E C, McGregor N E, Poulton I J, Pompolo S, Allan E H, Quinn J M, Gillespie M T, Martin T J, Sims N A (2008). Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res, 23(12): 2025-2032
CrossRef Google scholar
[103]
Wang S, Liu Y, Fang D, Shi S (2007). The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis, 13(6): 530-537
CrossRef Google scholar
[104]
Warden S J, Komatsu D E, Rydberg J, Bond J L, Hassett S M (2009). Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone, 44(3): 485-494
[105]
Wataru S, Kazuomi S, Yoshikazu N, Hiroaki I, Takaharu Y, Hideki Y (2005). Three-dimensional morphological analysis of humeral heads: a study in cadavers. Acta Orthop, 76(3): 392-396
[106]
Weber J M, Calvi L M (2010). Notch signaling and the bone marrow hematopoietic stem cell niche. Bone, 46(2): 281-285
[107]
Wei G, Pettway G J, McCauley L K, Ma P X (2004). The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials, 25(2): 345-352
CrossRef Google scholar
[108]
Woo D G, Shim M S, Park J S, Yang H N, Lee D R, Park K H (2009). The effect of electrical stimulation on the differentiation of hESCs adhered onto fibronectin-coated gold nanoparticles. Biomaterials, 30(29): 5631-5638
CrossRef Google scholar
[109]
Wu X, Ding S, Ding Q, Gray N S, Schultz P G (2002). A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc, 124(49): 14520-14521
CrossRef Google scholar
[110]
Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter M K (2004). Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells, 22(6): 972-980
CrossRef Google scholar
[111]
Xu L, Lu A, Zhao X, Chen X, Cummings S R (1996). Very low rates of hip fracture in Beijing, People’s Republic of China the Beijing Osteoporosis Project. Am J Epidemiol, 144(9): 901-907
[112]
Yadav V K, Ducy P (2010). Lrp5 and bone formation : A serotonin-dependent pathway. Ann N Y Acad Sci, 1192(1): 103-109
CrossRef Google scholar
[113]
Yan L, Zhou B, Prentice A, Wang X, Golden M H (1999). Epidemiological study of hip fracture in Shenyang, People’s Republic of China. Bone, 24(2): 151-155
[114]
Yan X, Qin H, Qu C, Tuan R S, Shi S, Huang G T (2010). iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev, 19(4): 469-480
CrossRef Google scholar
[115]
Yin D, Wang Z, Gao Q, Sundaresan R, Parrish C, Yang Q, Krebsbach P H, Lichtler A C, Rowe D W, Hock J, Liu P (2009). Determination of the fate and contribution of ex vivo expanded human bone marrow stem and progenitor cells for bone formation by 2.3ColGFP. Mol Ther, 17(11): 1967-1978
CrossRef Google scholar
[116]
Young C S, Abukawa H, Asrican R, Ravens M, Troulis M J, Kaban L B, Vacanti J P, Yelick P C (2005). Tissue-engineered hybrid tooth and bone. Tissue Eng, 11(9-10): 1599-1610
CrossRef Google scholar
[117]
Young C S, Terada S, Vacanti J P, Honda M, Bartlett J D, Yelick P C (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res, 81(10): 695-700
CrossRef Google scholar
[118]
Zanotti S, Canalis E (2010). Notch and the skeleton. Mol Cell Biol, 30(4): 886-896
CrossRef Google scholar
[119]
Zhao X Y, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo C L, Ma Q W, Wang L, Zeng F, Zhou Q (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260): 86-90
CrossRef Google scholar
[120]
Zhao X Y, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q (2010a). Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev, 6(3): 390-397
CrossRef Google scholar
[121]
Zhao X Y, Lv Z, Li W, Zeng F, Zhou Q (2010b). Production of mice using iPS cells and tetraploid complementation. Nat Protoc, 5(5): 963-971
CrossRef Google scholar
[122]
Zheng Y, Liu Y, Zhang C M, Zhang H Y, Li W H, Shi S, Le A D, Wang S L (2009). Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res, 88(3): 249-254
CrossRef Google scholar
[123]
Zhu H, Zhang Y, Ge H, (2004). Investigation of milk product consuming and the prevalence of spine fracture in elderly women. Proceeding of the 3rd. Shanghai Osteoporosis Symposium, 7: 146
[124]
Zippel N, Schulze M, Tobiasch E (2010). Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotechnol, 4(1): 1-22
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/