Prostaglandin E2 promotes hematopoietic development from human embryonic stem cells

Chao YANG, Jia-Fei XI, Xiao-Yan XIE, Wen YUE, Ruo-Yong WANG, Qiong WU, Li-Juan HE, Xue NAN, Yan-Hua LI, Xue-Tao PEI

PDF(547 KB)
PDF(547 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (5) : 445-454. DOI: 10.1007/s11515-010-0810-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Prostaglandin E2 promotes hematopoietic development from human embryonic stem cells

Author information +
History +

Abstract

Recent studies have suggested that prostaglandin (PG) E2 (PGE2) and the prostaglandin pathway are essential for hematopoietic stem cell growth and development. However, similar studies on hematopoietic commitment from human embryonic stem cells (hESCs) are still limited. Here we report that the addition of PGE2 promotes hematopoietic differentiation of hESCs. The induced cells from hESCs/OP9 co-culture and in the presence of PGE2 were characterized by reverse transcription-PCR (RT-PCR), flow cytometry, colony-forming assays and Wright-Giemsa staining. Our results demonstrated that PGE2 exposure could alter the gene expression pattern and morphology of co-cultured hESCs and resulted in a robust hematopoietic differentiation with higher frequencies of CD34+ and CD45+ cells. Furthermore, the Smad signaling pathway may be involved in PGE2 and OP9 induced hematopoietic differentiation of hESCs. This research may improve our knowledge of stem cell regulation and hopefully lead to better stem cell-based therapeutic options.

Keywords

human embryonic stem cells / prostaglandin E2 / hematopoiesis / in vitro differentiation

Cite this article

Download citation ▾
Chao YANG, Jia-Fei XI, Xiao-Yan XIE, Wen YUE, Ruo-Yong WANG, Qiong WU, Li-Juan HE, Xue NAN, Yan-Hua LI, Xue-Tao PEI. Prostaglandin E2 promotes hematopoietic development from human embryonic stem cells. Front Biol, 2010, 5(5): 445‒454 https://doi.org/10.1007/s11515-010-0810-2

References

[1]
Alfranca A, López-Oliva J M, Genós L, López-Maderuelo D, Mirones I, Salvado D, Quesada A J, Arroyo A G, Redondo J M (2008). PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway. Blood, 112(4): 1120–1128
CrossRef Google scholar
[2]
Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick J E (1999). Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med, 189(7): 1139–1148
CrossRef Google scholar
[3]
Bhattacharya B, Miura T, Brandenberger R, Mejido J, Luo Y, Yang A X, Joshi B H, Ginis I, Thies R S, Amit M, Lyons I, Condie B G, Itskovitz-Eldor J, Rao M S, Puri R K (2004). Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 103(8): 2956–2964
CrossRef Google scholar
[4]
Cha Y I, Kim S H, Solnica-Krezel L, Dubois R N (2005). Cyclooxygenase-1 signaling is required for vascular tube formation during development. Dev Biol, 282(1): 274–283
CrossRef Google scholar
[5]
Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102(3): 906–915
CrossRef Google scholar
[6]
Choi J H, Ryu Y S, Kim K H, Lee Y R, Cha K W, Han I S, Kwon B S (2009). In vitro development of a hemangioblast from a human embryonic stem cell, SNUhES#3. Life Sci, 85(1-2): 39–45
[7]
Frisch B J, Porter R L, Gigliotti B J, Olm-Shipman A J, Weber J M, O’Keefe R J, Jordan C T, Calvi L M (2009). In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood, 114(19): 4054–4063
CrossRef Google scholar
[8]
Gentile P S, Pelus L M (1987). In vivo modulation of myelopoiesis by prostaglandin E2. II. Inhibition of granulocyte-monocyte progenitor cell (CFU-GM) cell-cycle rate. Exp Hematol, 15(2): 119–126
[9]
Goessling W, North T E, Loewer S, Lord A M, Lee S, Stoick-Cooper C L, Weidinger G, Puder M, Daley G Q, Moon R T, Zon L I (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136(6): 1136–1147
[10]
Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S I (1999). Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood, 93(4): 1253–1263
[11]
Hoggatt J, Singh P, Sampath J, Pelus L M (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113(22): 5444–5455
CrossRef Google scholar
[12]
Ji J, Vijayaragavan K, Bosse M, Menendez P, Weisel K, Bhatia M (2008). OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells, 26(10): 2485–2495
CrossRef Google scholar
[13]
Larsson J, Karlsson S (2005). The role of Smad signaling in hematopoiesis. Oncogene, 24(37): 5676–5692
CrossRef Google scholar
[14]
Leahy K M, Koki A T, Masferrer J L (2000). Role of cyclooxygenases in angiogenesis. Curr Med Chem, 7: 1163–1170
[15]
Letamendia A, Labbé E, Attisano L (2001). Transcriptional regulation by Smads: crosstalk between the TGF-beta and Wnt pathways. J Bone Joint Surg Am, 83-A(Pt 1 Suppl 1): S31–S39
[16]
Liou J Y, Ellent D P, Lee S, Goldsby J, Ko B S, Matijevic N, Huang J C, Wu K K (2007). Cyclooxygenase-2-derived prostaglandin e2 protects mouse embryonic stem cells from apoptosis. Stem Cells, 25(5): 1096–1103
CrossRef Google scholar
[17]
Liu Y X, Ji L, Yue W, Yan Z F, Wang J, Xi J F, Zhang R, Nan X, Bai C X, Chen L, Wang Y F, Pei X T (2009). Cells extract from fetal liver promotes the hematopoietic differentiation of human embryonic stem cells. Cloning Stem Cells, 11(1): 51–60
CrossRef Google scholar
[18]
Liu Z, Tang Y, Qiu T, Cao X, Clemens T L (2006). A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. J Biol Chem, 281(25): 17156–17163
CrossRef Google scholar
[19]
Lu L, Pelus L M, Broxmeyer H E (1984). Modulation of the expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E. Exp Hematol, 12(9): 741–748
[20]
Lu S J, Feng Q, Park J S, Vida L, Lee B S, Strausbauch M, Wettstein P J, Honig G R, Lanza R (2008). Biological properties and enucleation of red blood cells from human embryonic stem cells. Blood, 112: 4475–4484
CrossRef Google scholar
[21]
Lu S J, Li F, Vida L, Honig G R (2004). CD34+CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood, 103(11): 4134–4141
CrossRef Google scholar
[22]
Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakauchi H, Tsuji K (2008). Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A, 105(35): 13087–13092
CrossRef Google scholar
[23]
Miller S B (2006). Prostaglandins in health and disease: an overview. Semin Arthritis Rheum, 36(1): 37–49
CrossRef Google scholar
[24]
Naito A T, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006). Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A, 103(52): 19812–19817
CrossRef Google scholar
[25]
North T E, Goessling W, Walkley C R, Lengerke C, Kopani K R, Lord A M, Weber G J, BowmanT V, Jang I H, Grosser T, Fitzgerald G A, Daley G Q, Orkin S H, Zon L I (2007). Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 447(7147): 1007–1011
CrossRef Google scholar
[26]
Smith W L, DeWitt D L, Garavito R M (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem, 69: 145–182
CrossRef Google scholar
[27]
Srivastava A S, Nedelcu E, Esmaeli-AzadB, Mishra R, Carrier E (2007). Thrombopoietin enhances generation of CD34+ cells from human embryonic stem cells. Stem Cells, 25(6): 1456–1461
CrossRef Google scholar
[28]
Varga A C, Wrana J L (2005). The disparate role of BMP in stem cell biology. Oncogene, 24(37): 5713–5721
CrossRef Google scholar
[29]
Vodyanik M A, Bork J A, Thomson J A, Slukvin I I (2005). Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2): 617–626
CrossRef Google scholar
[30]
Vodyanik M A, Bork J A, Thomson J A, Slukvin I I (2005). Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2): 617–626
CrossRef Google scholar
[31]
WangL, Li L, Menendez P, Cerdan C, Bhatia M (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105(12): 4598–4603
CrossRef Google scholar
[32]
Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H (2008). Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood, 111(4): 1933–1941
CrossRef Google scholar

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No: 2006AA02A107), the State Key Program for Basic Research of China (No: 2005CB522702), and the Project of Beijing Municipal Science & Technology Commission (No: D07050701350702).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(547 KB)

Accesses

Citations

Detail

Sections
Recommended

/