Advances in genomic study of cortical projection neurons

Chunsheng QU, Jieguang CHEN

PDF(273 KB)
PDF(273 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (6) : 524-531. DOI: 10.1007/s11515-010-0670-9
REVIEW
REVIEW

Advances in genomic study of cortical projection neurons

Author information +
History +

Abstract

The mammalian neocortex gives rise to perception and initiates voluntary motor responses. The cortical laminae are comprised of six distinct cellular layers of local circuit neurons and projection neurons. To explore molecular identities of the distinct cortical projection neurons, discovery-orientated genomic approaches have been adopted. Microarray analysis of dissected cortical tissues has been applied to identify cortical layer markers. Early neuronal cells were sorted by FACS from GFP-labeled embryonic brains for gene expression profiling. Laser capture microdissection of retrograde-labeled projection neurons, when coupled with optimal RNA amplification technology, has become a valuable strategy for neuronal isolation and gene expression analysis in differentiated neurons. RNA sequencing technology is promising not only for the determination of gene expression, but also for discovery of posttranscriptional modifications of the complex neural system. There is no doubt that advances in genomic studies are opening up novel research avenues for our understanding of the cortical neuronal functions.

Keywords

expression profiling / pyramidal neurons / RNA amplification / cortex / retrograde labeling

Cite this article

Download citation ▾
Chunsheng QU, Jieguang CHEN. Advances in genomic study of cortical projection neurons. Front Biol, 2010, 5(6): 524‒531 https://doi.org/10.1007/s11515-010-0670-9

References

[1]
Arlotta P, Molyneaux B J, Chen J, Inoue J, Kominami R, Macklis J D (2005). Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo.Neuron, 45(2): 207–221
CrossRef Pubmed Google scholar
[2]
Bertone P, Gerstein M, Snyder M (2005). Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery.Chromosome Res, 13(3): 259–274
CrossRef Pubmed Google scholar
[3]
Böhm C, Newrzella D, Sorgenfrei O (2005). Laser microdissection in CNS research.Drug Discov Today, 10(17): 1167–1174
CrossRef Pubmed Google scholar
[4]
Bunney W E, Bunney B G, Vawter M P, Tomita H, Li J, Evans S J, Choudary P V, Myers R M, Jones E G, Watson S J, Akil H (2003). Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders.Am J Psychiatry, 160(4): 657–666
CrossRef Pubmed Google scholar
[5]
Cahoy J D, Emery B, Kaushal A, Foo L C, Zamanian J L, Christopherson K S, Xing Y, Lubischer J L, Krieg P A, Krupenko S A, Thompson W J, Barres B A (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.J Neurosci, 28(1): 264–278
CrossRef Pubmed Google scholar
[6]
Chen J G, Rasin M R, Kwan K Y, Sestan N (2005). Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex.Proc Natl Acad Sci USA, 102(49): 17792–17797
CrossRef Pubmed Google scholar
[7]
Chow N, Cox C, Callahan L M, Weimer J M, Guo L, Coleman P D (1998). Expression profiles of multiple genes in single neurons of Alzheimer’s disease.Proc Natl Acad Sci USA, 95(16): 9620–9625
CrossRef Pubmed Google scholar
[8]
Clément-Ziza M, Gentien D, Lyonnet S, Thiery J P, Besmond C, Decraene C (2009). Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling.BMC Genomics, 10(1): 246
CrossRef Pubmed Google scholar
[9]
Colosimo M E, Brown A, Mukhopadhyay S, Gabel C, Lanjuin A E, Samuel A D, Sengupta P (2004). Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types.Curr Biol, 14(24): 2245–2251
CrossRef Pubmed Google scholar
[10]
Cui D, Dougherty K J, Machacek D W, Sawchuk M, Hochman S, Baro D J (2005). Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons.Physiol Genomics, 24(3): 276–289
CrossRef Pubmed Google scholar
[11]
Eberwine J (2001). Single-cell molecular biology.Nat Neurosci, 4(Suppl): 1155–1156
CrossRef Pubmed Google scholar
[12]
Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992). Analysis of gene expression in single live neurons.Proc Natl Acad Sci USA, 89(7): 3010–3014
CrossRef Pubmed Google scholar
[13]
Emmert-Buck M R, Bonner R F, Smith P D, Chuaqui R F, Zhuang Z, Goldstein S R, Weiss R A, Liotta L A (1996). Laser capture microdissection.Science, 274(5289): 998–1001
CrossRef Pubmed Google scholar
[14]
Espina V, Wulfkuhle J D, Calvert V S, VanMeter A, Zhou W, Coukos G, Geho D H, Petricoin E F 3rd, Liotta L A (2006). Laser-capture microdissection.Nat Protoc, 1(2): 586–603
CrossRef Pubmed Google scholar
[15]
Evans S J, Choudary P V, Vawter M P, Li J, Meador-Woodruff J H, Lopez J F, Burke S M, Thompson R C, Myers R M, Jones E G, Bunney W E, Watson S J, Akil H (2003). DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles.Neurobiol Dis, 14(2): 240–250
CrossRef Pubmed Google scholar
[16]
Fox R M, Von Stetina S E, Barlow S J, Shaffer C, Olszewski K L, Moore J H, Dupuy D, Vidal M, Miller D M 3rd (2005). A gene expression fingerprint of C. elegans embryonic motor neurons.BMC Genomics, 6(1): 42
CrossRef Pubmed Google scholar
[17]
Geschwind D H, Levitt P (2007). Autism spectrum disorders: developmental disconnection syndromes.Curr Opin Neurobiol, 17(1): 103–111
CrossRef Pubmed Google scholar
[18]
Ginsberg S D, Che S, Counts S E, Mufson E J (2006). Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease.J Neurochem, 96(5): 1401–1408
CrossRef Pubmed Google scholar
[19]
Ginsberg S D, Hemby S E, Lee V M, Eberwine J H, Trojanowski J Q (2000). Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons.Ann Neurol, 48(1): 77–87
CrossRef Pubmed Google scholar
[20]
Gong S, Zheng C, Doughty M L, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.Nature, 425(6961): 917–925
CrossRef Pubmed Google scholar
[21]
Gray P A, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk D I, Tsung E F, Cai Z, Alberta J A, Cheng L P, Liu Y, Stenman J M, Valerius M T, Billings N, Kim H A, Greenberg M E, McMahon A P, Rowitch D H, Stiles C D, Ma Q (2004). Mouse brain organization revealed through direct genome-scale TF expression analysis.Science, 306(5705): 2255–2257
CrossRef Pubmed Google scholar
[22]
Greenberg S A (2001). DNA microarray gene expression analysis technology and its application to neurological disorders.Neurology, 57(5): 755–761
Pubmed
[23]
Harel N Y, Strittmatter S M (2006). Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?Nat Rev Neurosci, 7(8): 603–616
CrossRef Pubmed Google scholar
[24]
Heintz N (2000). Analysis of mammalian central nervous system gene expression and function using bacterial artificial chromosome-mediated transgenesis.Hum Mol Genet, 9(6): 937–943
CrossRef Pubmed Google scholar
[25]
Hoerder-Suabedissen A, Wang W Z, Lee S, Davies K E, Goffinet A M, Rakić S, Parnavelas J, Reim K, Nicolić M, Paulsen O, Molnár Z (2009). Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.Cereb Cortex, 19(8): 1738–1750
CrossRef Pubmed Google scholar
[26]
Jiang Y M, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H, Niwa J, Tanaka F, Doyu M, Yoshida M, Hashizume Y, Sobue G (2005). Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis.Ann Neurol, 57(2): 236–251
CrossRef Pubmed Google scholar
[27]
Johnson M B, Kawasawa Y I, Mason C E, Krsnik Z, Coppola G, Bogdanović D, Geschwind D H, Mane S M, State M W, Sestan N (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis.Neuron, 62(4): 494–509
CrossRef Pubmed Google scholar
[28]
Kamme F, Salunga R, Yu J, Tran D T, Zhu J, Luo L, Bittner A, Guo H Q, Miller N, Wan J, Erlander M (2003). Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity.J Neurosci, 23(9): 3607–3615
Pubmed
[29]
Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do H H, Weiss G, Enard W, Heissig F, Arendt T, Nieselt-Struwe K, Eichler E E, Pääbo S (2004). Regional patterns of gene expression in human and chimpanzee brains.Genome Res, 14(8): 1462–1473
CrossRef Pubmed Google scholar
[30]
Kurn N, Chen P, Heath J D, Kopf-Sill A, Stephens K M, Wang S (2005). Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications.Clin Chem, 51(10): 1973–1981
CrossRef Pubmed Google scholar
[31]
Leamey C A, Glendining K A, Kreiman G, Kang N D, Wang K H, Fassler R, Sawatari A, Tonegawa S, Sur M (2007). Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways.Cereb Cortex, 18(1): 53–66
CrossRef Pubmed Google scholar
[32]
Lein E S, Hawrylycz M J, Ao N, Ayres M, Bensinger A, Bernard A, Boe A F, Boguski M S, Brockway K S, Byrnes E J, Chen L, Chen L, Chen T M, Chin M C, Chong J, Crook B E, Czaplinska A, Dang C N, Datta S, Dee N R, Desaki A L, Desta T, Diep E, Dolbeare T A, Donelan M J, Dong H W, Dougherty J G, Duncan B J, Ebbert A J, Eichele G, Estin L K, Faber C, Facer B A, Fields R, Fischer S R, Fliss T P, Frensley C, Gates S N, Glattfelder K J, Halverson K R, Hart M R, Hohmann J G, Howell M P, Jeung D P, Johnson R A, Karr P T, Kawal R, Kidney J M, Knapik R H, Kuan C L, Lake J H, Laramee A R, Larsen K D, Lau C, Lemon T A, Liang A J, Liu Y, Luong L T, Michaels J, Morgan J J, Morgan R J, Mortrud M T, Mosqueda N F, Ng L L, Ng R, Orta G J, Overly C C, Pak T H, Parry S E, Pathak S D, Pearson O C, Puchalski R B, Riley Z L, Rockett H R, Rowland S A, Royall J J, Ruiz M J, Sarno N R, Schaffnit K, Shapovalova N V, Sivisay T, Slaughterbeck C R, Smith S C, Smith K A, Smith B I, Sodt A J, Stewart N N, Stumpf K R, Sunkin S M, Sutram M, Tam A, Teemer C D, Thaller C, Thompson C L, Varnam L R, Visel A, Whitlock R M, Wohnoutka P E, Wolkey C K, Wong V Y, Wood M, Yaylaoglu M B, Young R C, Youngstrom B L, Yuan X F, Zhang B, Zwingman T A, Jones A R (2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature, 445(7124): 168–176
CrossRef Pubmed Google scholar
[33]
Liang W S, Dunckley T, Beach T G, Grover A, Mastroeni D, Ramsey K, Caselli R J, Kukull W A, McKeel D, Morris J C, Hulette C M, Schmechel D, Reiman E M, Rogers J, Stephan D A (2008). Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set.Physiol Genomics, 33(2): 240–256
CrossRef Pubmed Google scholar
[34]
Lobo M K, Karsten S L, Gray M, Geschwind D H, Yang X W (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains.Nat Neurosci, 9(3): 443–452
CrossRef Pubmed Google scholar
[35]
Lombardino A J, Hertel M, Li X C, Haripal B, Martin-Harris L, Pariser E, Nottebohm F (2006). Expression profiling of intermingled long-range projection neurons harvested by laser capture microdissection.J Neurosci Methods, 157(2): 195–207
CrossRef Pubmed Google scholar
[36]
Low L K, Cheng H J (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections.Philos Trans R Soc Lond B Biol Sci, 361(1473): 1531–1544
CrossRef Pubmed Google scholar
[37]
Luo L, Salunga R C, Guo H, Bittner A, Joy K C, Galindo J E, Xiao H, Rogers K E, Wan J S, Jackson M R, Erlander M G (1999). Gene expression profiles of laser-captured adjacent neuronal subtypes.Nat Med, 5(1): 117–122
CrossRef Pubmed Google scholar
[38]
Magdaleno S, Jensen P, Brumwell C L, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten D M, Eden C, Norland S M, Rice D S, Dosooye N, Shakya S, Mehta P, Curran T (2006). BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.PLoS Biol, 4(4): e86
CrossRef Pubmed Google scholar
[39]
Marguerat S, Bähler J (2010). RNA-seq: from technology to biology.Cell Mol Life Sci, 67(4): 569–579
CrossRef Pubmed Google scholar
[40]
Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass K C, Schor N F, Sisodia S S (2005). Presenilin-1-dependent transcriptome changes.J Neurosci, 25(6): 1571–1578
CrossRef Pubmed Google scholar
[41]
Mirnics K, Middleton F A, Marquez A, Lewis D A, Levitt P (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.Neuron, 28(1): 53–67
CrossRef Pubmed Google scholar
[42]
Molyneaux B J, Arlotta P, Hirata T, Hibi M, Macklis J D (2005). Fezl is required for the birth and specification of corticospinal motor neurons.Neuron, 47(6): 817–831
CrossRef Pubmed Google scholar
[43]
Molyneaux B J, Arlotta P, Menezes J R L, Macklis J D (2007). Neuronal subtype specification in the cerebral cortex.Nat Rev Neurosci, 8(6): 427–437
CrossRef Pubmed Google scholar
[44]
Mufson E J, Counts S E, Ginsberg S D (2002). Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease.Neurochem Res, 27(10): 1035–1048
CrossRef Pubmed Google scholar
[45]
O’Leary D D, Chou S J, Sahara S (2007). Area patterning of the mammalian cortex.Neuron, 56(2): 252–269
CrossRef Pubmed Google scholar
[46]
O’Leary D D, Koester S E (1993). Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex.Neuron, 10(6): 991–1006
CrossRef Pubmed Google scholar
[47]
Pietersen C Y, Lim M P, Woo T U (2009). Obtaining high quality RNA from single cell populations in human postmortem brain tissue.J Vis Exp, 30(30): 1444
Pubmed
[48]
Polleux F, Ince-Dunn G, Ghosh A (2007). Transcriptional regulation of vertebrate axon guidance and synapse formation.Nat Rev Neurosci, 8(5): 331–340
CrossRef Pubmed Google scholar
[49]
Rossner M J, Hirrlinger J, Wichert S P, Boehm C, Newrzella D, Hiemisch H, Eisenhardt G, Stuenkel C, von Ahsen O, Nave K A (2006). Global transcriptome analysis of genetically identified neurons in the adult cortex.J Neurosci, 26(39): 9956–9966
CrossRef Pubmed Google scholar
[50]
Roy N S, Benraiss A, Wang S, Fraser R A, Goodman R, Couldwell W T, Nedergaard M, Kawaguchi A, Okano H, Goldman S A (2000). Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone.J Neurosci Res, 59(3): 321–331
CrossRef Pubmed Google scholar
[51]
Rudnicki M, Eder S, Schratzberger G, Mayer B, Meyer T W, Tonko M, Mayer G (2004). Reliability of t7-based mRNA linear amplification validated by gene expression analysis of human kidney cells using cDNA microarrays.Nephron, Exp Nephrol, 97(3): e86–e95
CrossRef Pubmed Google scholar
[52]
Sandberg R, Yasuda R, Pankratz D G, Carter T A, Del Rio J A, Wodicka L, Mayford M, Lockhart D J, Barlow C (2000). Regional and strain-specific gene expression mapping in the adult mouse brain.Proc Natl Acad Sci USA, 97(20): 11038–11043
CrossRef Pubmed Google scholar
[53]
Schulze A, Downward J (2000). Analysis of gene expression by microarrays: cell biologist’s gold mine or minefield?J Cell Sci, 113(Pt 23): 4151–4156
Pubmed
[54]
Sugino K, Hempel C M, Miller M N, Hattox A M, Shapiro P, Wu C, Huang Z J, Nelson S B (2006). Molecular taxonomy of major neuronal classes in the adult mouse forebrain.Nat Neurosci, 9(1): 99–107
CrossRef Pubmed Google scholar
[55]
Tudor M, Akbarian S, Chen R Z, Jaenisch R (2002). Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain.Proc Natl Acad Sci USA, 99(24): 15536–15541
CrossRef Pubmed Google scholar
[56]
van Gelder R N, von Zastrow M E, Yool A, Dement W C, Barchas J D, Eberwine J H (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA.Proc Natl Acad Sci USA, 87(5): 1663–1667
CrossRef Pubmed Google scholar
[57]
Vercelli A, Repici M, Garbossa D, Grimaldi A (2000). Recent techniques for tracing pathways in the central nervous system of developing and adult mammals.Brain Res Bull, 51(1): 11–28
CrossRef Pubmed Google scholar
[58]
Vernes S C, Newbury D F, Abrahams B S, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver P L, Davies K E, Geschwind D H, Monaco A P, Fisher S E (2008). A functional genetic link between distinct developmental language disorders.N Engl J Med, 359(22): 2337–2345
CrossRef Pubmed Google scholar
[59]
Visel A, Thaller C, Eichele G (2004). GenePaint.org: an atlas of gene expression patterns in the mouse embryo.Nucleic Acids Res, 32(90001 Database issue): 552 D–556 D
CrossRef Pubmed Google scholar
[60]
Watakabe A, Sugai T, Nakaya N, Wakabayashi K, Takahashi H, Yamamori T, Nawa H (2001). Similarity and variation in gene expression among human cerebral cortical subregions revealed by DNA macroarrays: technical consideration of RNA expression profiling from postmortem samples.Brain Res Mol Brain Res, 88(1-2): 74–82
CrossRef Pubmed Google scholar
[61]
Watson J D, Wang S, Von Stetina S E, Spencer W C, Levy S, Dexheimer P J, Kurn N, Heath J D, Miller D M 3rd (2008). Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system.BMC Genomics, 9(1): 84
CrossRef Pubmed Google scholar
[62]
Wilhelm J, Muyal J P, Best J, Kwapiszewska G, Stein M M, Seeger W, Bohle R M, Fink L (2006). Systematic comparison of the T7-IVT and SMART-based RNA preamplification techniques for DNA microarray experiments.Clin Chem, 52(6): 1161–1167
CrossRef Pubmed Google scholar
[63]
Wurmbach E, González-Maeso J, Yuen T, Ebersole B J, Mastaitis J W, Mobbs C V, Sealfon S C (2002). Validated genomic approach to study differentially expressed genes in complex tissues.Neurochem Res, 27(10): 1027–1033
CrossRef Pubmed Google scholar
[64]
Yamamori T, Rockland K S (2006). Neocortical areas, layers, connections, and gene expression.Neurosci Res, 55(1): 11–27
CrossRef Pubmed Google scholar
[65]
Yao F, Yu F, Gong L, Taube D, Rao D D, MacKenzie R G (2005). Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection.J Neurosci Methods, 143(2): 95–106
CrossRef Pubmed Google scholar
[66]
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors.PLOS Comput Biol, 3(10): 1951–1967
CrossRef Pubmed Google scholar
[67]
Zapala M A, Hovatta I, Ellison J A, Wodicka L, Del Rio J A, Tennant R, Tynan W, Broide R S, Helton R, Stoveken B S, Winrow C, Lockhart D J, Reilly J F, Young W G, Bloom F E, Lockhart D J, Barlow C (2005). Adult mouse brain gene expression patterns bear an embryologic imprint.Proc Natl Acad Sci USA, 102(29): 10357–10362
CrossRef Pubmed Google scholar
[68]
Zhu H, Yang Y, Gao J, Tao H, Qu C, Qu J, Chen J (2010). Area dependent expression of ZNF312 in human fetal cerebral cortex.Neurosci Res, 68(1): 73–76
CrossRef Pubmed Google scholar

Acknowledgements

The works in author’s lab are supported by grants 30840034 and 30970924 from the National Natural Science Foundation of China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(273 KB)

Accesses

Citations

Detail

Sections
Recommended

/