RNAi screen to identify protein phosphatases that regulate the NF-kappaB signaling

Guoxin WANG, Suping LI, Feifei WANG, Shufang HUANG, Xian LI, Wei XIONG, Biliang ZHANG

PDF(372 KB)
PDF(372 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (3) : 263-271. DOI: 10.1007/s11515-010-0050-5
RESEARCH ARTICLE
RESEARCH ARTICLE

RNAi screen to identify protein phosphatases that regulate the NF-kappaB signaling

Author information +
History +

Abstract

NF-kappaB plays a critical role in cell survival, apoptosis, and inflammatory responses. Serine/threonine-specific phosphatases (PPs) represent the second major class of enzymes that catalyze the dephosphorylation of proteins. The roles of PPs regulating NF-kappaB activities are poorly understood. Here we describe an RNAi-based screen to identify the PPs that involve in regulating NF-kappaB signaling. Thirty-four candidate PPs siRNAs were synthesized and primarily screened by NF-kappaB reporter gene assay in HeLa cells. PHLPP, one of the protein phosphatase type 2C family members (PP2C), was identified as a positive regulator of NF-kappaB signaling. Knock-down of PHLPP dramatically attenuated TNFα-stimulated NF-kappaB transcriptional activation. Knock-down of PHLPP led to enhancement of NF-kappaB/p65 nuclear import and retention, but decreased TNFα-induced phosphorylation at Ser276 on p65. This critical phosphorylation was also drastically reduced by knock-down of PKCalpha and Akt1, two important serine/threonine kinases dephosphorylated by PHLPP. The results together suggest that PHLPP-Akt-PKC may represent an important signaling loop that activates NF-kappaB/p65 signaling through critical serine phosphorylation.

Keywords

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) / protein serine/threonine phosphatases / PH domain leucine-rich repeat protein phosphatase (PHLPP) / RNA interference

Cite this article

Download citation ▾
Guoxin WANG, Suping LI, Feifei WANG, Shufang HUANG, Xian LI, Wei XIONG, Biliang ZHANG. RNAi screen to identify protein phosphatases that regulate the NF-kappaB signaling. Front Biol, 2010, 5(3): 263‒271 https://doi.org/10.1007/s11515-010-0050-5

References

[1]
Bohuslav J, Chen L F, Kwon H, Mu Y, Greene W C (2004). p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem, 279(25): 26115-26125
CrossRef Google scholar
[2]
Brognard J, Newton A C (2008). PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab, 19(6): 223-230
CrossRef Google scholar
[3]
Brognard J, Sierecki E, Gao T, Newton A C (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 25(6): 917-931
CrossRef Google scholar
[4]
Gao T, Furnari F, Newton A C (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 18(1): 13-24
CrossRef Google scholar
[5]
Gao T, Brognard J, Newton A C (2008). The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem, 283(10): 6300-6311
CrossRef Google scholar
[6]
Hayden M S, Ghosh S (2004). Signaling to NF-kappaB. Genes Dev, 18(18): 2195-2224
CrossRef Google scholar
[7]
Hayden M S, Ghosh S (2008). Shared principles in NF-kappaB signaling. Cell, 132(3): 344-362
CrossRef Google scholar
[8]
Henmi T, Amano K, Nagaura Y, Matsumoto K, Echigo S, Tamura S, Kobayashi T (2009). A mechanism for the suppression of interleukin-1-induced nuclear factor kappaB activation by protein phosphatase 2Ceta-2. Biochem J, 423(1): 71-78
CrossRef Google scholar
[9]
Hochrainer K, Racchumi G, Anrather J (2007). Hypo-phosphorylation leads to nuclear retention of NF-kappaB p65 due to impaired IkappaBalpha gene synthesis. FEBS Lett, 581(28): 5493-5499
CrossRef Google scholar
[10]
Kuo Y C, Huang K Y, Yang C H, Yang Y S, Lee W Y, Chiang C W (2008). Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem, 283(4): 1882-1892
CrossRef Google scholar
[11]
Lee C H, Jeon Y T, Kim S H, Song Y S (2007). NF-kappaB as a potential molecular target for cancer therapy. Biofactors, 29(1): 19-35
CrossRef Google scholar
[12]
Li H, Lin X (2008). Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine, 41(1): 1-8
CrossRef Google scholar
[13]
Li S, Wang L, Berman M A, Zhang Y, Dorf M E (2006). RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling. Mol Cell, 24(4): 497-509
CrossRef Google scholar
[14]
Lin X, Duan X, Liang Y Y, Su Y, Wrighton K H, Long J, Hu M, Davis C M, Wang J, Brunicardi F C, Shi Y, Chen Y G, Meng A, Feng X H (2006). PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell, 125(5): 915-928
CrossRef Google scholar
[15]
Liu J, Weiss H L, Rychahou P, Jackson L N, Evers B M, Gao T (2009). Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene, 28(7): 994-1004
CrossRef Google scholar
[16]
Lu G, Wang Y (2008). Functional diversity of mammalian type 2C protein phosphatase isoforms: new tales from an old family. Clin Exp Pharmacol Physiol, 35(2): 107-112
[17]
Madrid L V, Wang C Y, Guttridge D C, Schottelius A J, Baldwin A S Jr, Mayo M W (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 20(5): 1626-1638
CrossRef Google scholar
[18]
Madrid L V, Mayo M W, Reuther J Y, Baldwin A S Jr (2001). Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem, 276(22): 18934-18940
CrossRef Google scholar
[19]
Mumby M C, Walter G (1993). Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev, 73(4): 673-699
[20]
Okazaki T, Sakon S, Sasazuki T, Sakurai H, Doi T, Yagita H, Okumura K, Nakano H (2003). Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem Biophys Res Commun, 300(4): 807-812
CrossRef Google scholar
[21]
Park K A, Byun H S, Won M, Yang K J, Shin S, Piao L, Kim J M, Yoon W H, Junn E, Park J, Seok J H, Hur G M (2007). Sustained activation of protein kinase C downregulates nuclear factor-kappaB signaling by dissociation of IKK-gamma and Hsp90 complex in human colonic epithelial cells. Carcinogenesis, 28(1): 71-80
CrossRef Google scholar
[22]
Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W (1999). IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem, 274(43): 30353-30356
CrossRef Google scholar
[23]
Song G, Ouyang G, Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 9(1): 59-71
CrossRef Google scholar
[24]
Sun Z, Andersson R (2002). NF-kappaB activation and inhibition: a review. Shock, 18(2): 99-106
CrossRef Google scholar
[25]
Sun W, Yu Y, Dotti G, Shen T, Tan X, Savoldo B, Pass A K, Chu M, Zhang D, Lu X, Fu S, Lin X, Yang J (2009). PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha-induced IKKbeta-NF-kappaB activation. Cell Signal, 21(1): 95-102
CrossRef Google scholar
[26]
Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G (2003). Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J, 22(6): 1313-1324
CrossRef Google scholar
[27]
Viatour P, Merville M P, Bours V, Chariot A (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 30(1): 43-52
CrossRef Google scholar
[28]
Xiao L, Gong L L, Yuan D, Deng M, Zeng X M, Chen L L, Zhang L, Yan Q, Liu J P, Hu X H, Sun S M, Liu J, Ma H L, Zheng C B, Fu H, Chen P C, Zhao J Q, Xie S S, Zou L J, Xiao Y M, Liu W B, Zhang J, Liu Y, Li D W (2010). Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. [Epub ahead of print] Cell Death Differ. DOI?
[29]
Yamamoto Y, Gaynor R B (2001). Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest, 107(2): 135-142
CrossRef Google scholar
[30]
Zhong H, Voll R E, Ghosh S (1998). Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell, 1(5): 661-671
CrossRef Google scholar
[31]
Zhong H, May M J, Jimi E, Ghosh S (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell, 9(3): 625-636
CrossRef Google scholar

Acknowledgements

This research was supported by the National High Technology Research and Development Program of China (863 Program) (No.2006AA02Z191), the Bureau of Science and Technology of Guangzhou, China (No. 2007Z1-E4041) and Guangzhou Economic & Technological Development District (GETDD S & T Project) (2007G-P029).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(372 KB)

Accesses

Citations

Detail

Sections
Recommended

/