Bamboo fiber dissolution and hydrolysis in formic acid were studied. After hydrolysis, formic acid can be recovered in a clean state and reused. Solid water-soluble sugars were obtained. After being dipped into the formic acid solution for 30 min, the bamboo fibers started to swell. After one hour, the bamboo fibers gradually started to dissolve in the formic acid solution. The color of the liquor/solution turned green and dark. In the end, the bamboo fibers became thoroughly dissolved in the liquor after four hours. There was a clear hierarchical tissue structure on the fiber surface, as observed by AFM before treatment. The differential structure disappeared after 30 min of treatment. The fiber surface became plump and glossy. After six hours reaction at 60°C, the solid sugar mixture recovered contained glucose, cellobiose, cellotriose, cellotetrose, cellopentose and cellohexaose. A significant fraction of the sugar products consisted of monomeric glucose. More than 54.5% of the bamboo fiber mass had been transformed into monomeric glucose.
SUN Yong, LIN Lu, DENG Haibo, PENG Hong, LI Jiazhe, SUN Runchang, LIU Shijie
. Hydrolysis of bamboo fiber cellulose in formic
acid[J]. Frontiers of Forestry in China, 2008
, 3(4)
: 480
-486
.
DOI: 10.1007/s11461-008-0072-1
1. Aguilar R, Ramírez J A, Garrote G, Vázquez M (2002). Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng, 55(4): 309–318. doi:10.1016/S0260-8774(02)00106-1
2. Cao Y, Tan H (2005). Studyon crystal structures of enzyme-hydrolyzed cellulosic materials byX-ray diffraction. Enzyme Microb Tech, 36(2–3): 314–317. doi:10.1016/j.enzmictec.2004.09.002
3. Choi C H, Mathews A P (1996). Two-stepacid hydrolysis process kinetics in the saccharification of low-gradebiomass: 1. Experimental studies on the formation and degradationof sugars.Bioresour Tech, 58(2): 101–106. doi:10.1016/S0960-8524(96)00089-2
4. Gan Q, Allen S J, Taylor G (2003). Kinetic dynamics in heterogeneousenzymatic hydrolysis of cellulose: an overview, an experimental studyand mathematical modeling. Process Biochem, 38(7): 1003–1017. doi:10.1016/S0032-9592(02)00220-0
5. Goeppert A, Dinér P, Ahlberg P, Sommer J (2002). Methane activation and oxidation in sulfuric acid. Chem Eur J, 8: 3277–3283. doi:10.1002/1521-3765(20020715)8:14<3277::AID-CHEM3277>3.0.CO;2-5
6. Håkansson H, Ahlgren P (2005). Acidhydrolysis of some industrial pulps: effect of hydrolysis conditionsand raw material. Cellulose, 12(2): 177–183. doi:10.1007/s10570-004-1038-6
7. Hinterstoisser B, Åkerholm M, Salmén L (2001). Effect of fiber orientation in dynamicFTIR study on native cellulose. CarbohydRes, 334(1): 27–37. doi:10.1016/S0008-6215(01)00167-7
8. Iranmahboob J, Nadim F, Monemi S (2002). Optimizing acid-hydrolysis: a criticalstep for production of ethanol from mixed wood chips. Biomass Bioenerg, 22(5): 401–404. doi:10.1016/S0961-9534(02)00016-8
9. Jarvis M (2003). Cellulose stacks up. Nature, 426(6967): 611–612. doi:10.1038/426611a
10. Johansson L, Virkki L, Anttil H, Esselstrom H, Tuomainen P, Sontag-Strohm T (2006). Hydrolysis of β-glucan. Food Chem, 97(1): 71–79. doi:10.1016/j.foodchem.2005.03.031
11. KoheiIkari M, Suzuki I (2004). High-performancehydrolysis of cellulose using mixed cellulose species and ultrasonication. Biochem Eng J, 17(2): 79–83. doi:10.1016/S1369-703X(03)00141-4
12. Liu S, Amidon T E, Francis R C, Ramarao B V, Lai Y Z, Scott G M (2006). From Forest Biomass to Chemicalsand Energy: Biorefinery Initiative in New York. Ind Biotech, 2(2): 113–120. doi:10.1089/ind.2006.2.113
13. Lloyd T A, Wyman C E (2005). Combinedsugar yields for dilute sulfuric acid pretreatment of corn stoverfollowed by enzymatic hydrolysis of the remaining solids. Bioresour Tech, 96(18): 1967–1977. doi:10.1016/j.biortech.2005.01.011
14. Mihranyan A, Llagostera A P, Karmhag R, Strømme M, Ek R (2004). Moisturesorption by cellulose powders of varying crystallinity. Int J Pharm, 269(2): 433–442. doi:10.1016/j.ijpharm.2003.09.030
15. Mosier N S, Ladisch C M, Ladisch M R (2002). Characterization of acid catalyticdomains for cellulose hydrolysis and glucose degradation. Biotech Bioeng, 79(6): 610–618. doi:10.1002/bit.10316
16. Oh S Y, Yoo D I, Shin Y, Kim H C, Kim H Y, Chung Y S, Park W H, Youk J H (2005a). Crystalline structure analysis ofcellulose treated with sodium hydroxide and carbon dioxide by meansof X-ray diffraction and FTIR spectroscopy. Carbohyd Res, 340(15): 2376–2391. doi:10.1016/j.carres.2005.08.007
17. Oh S Y, Yoo D I, Shin Y, Seo G (2005b). FTIR analysis of cellulose treated with sodium hydroxide and carbondioxide. Carbohyd Res, 340(3): 417–428. doi:10.1016/j.carres.2004.11.027
18. Potthast A, Rosenau T, Sartori J, Sixt H, Kosma P (2003). Hydrolytic processesand condensation reactions in the cellulose solvent system N,N-dimethylacetamide/lithium.chloride. Part 2: degradation of cellulose.Polymer, 44(1): 7–17. doi:10.1016/S0032-3861(02)00751-6
19. Rostrup-Nielsen J R (2005). Making fuels from biomass. Science, 308(5727): 1421–1422. doi:10.1126/science.1113354
20. Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004). Microporous membranes prepared fromcellulose in NaOH/thiourea aqueous solution. J Membrane Sci, 241(2): 265–274. doi:10.1016/j.memsci.2004.05.019
21. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998). Cellulosehydrolysis in subcritical and supercritical water. J Supercrit Fluid, 13(1–3): 261–268
22. Segal L, Creely J J, Jr Martin A E, Conrad C M (1959). An empirical method for estimating the degree of crystallinity ofnative cellulose using the X-ray diffractometer. Text Res J, 29(10): 786–794. doi:10.1177/004051755902901003
23. Sjöholma E, Gustafssona K, Erikssona B, Brown W, Colmsjö A (2000). Aggregationof cellulose in lithium chloride/N,N- dimethylacetamide. Carbohyd Polymer, 41(2): 153–161. doi:10.1016/S0144-8617(99)00080-6
24. Stein M, Sauer J (1997). Formicacid tetramers: structure isomers in the gas phase. Chem Phys Lett, 267(1/2): 111–115. doi:10.1016/S0009-2614(97)00060-2
25. Sun Y, Cheng J Y (2002). Hydrolysisof lignocellulosic materials for ethanol production. Bioresour Tech, 83(1): 1–11. doi:10.1016/S0960-8524(01)00212-7
26. Takács E, Wojnárovits L, Borsa J, Papp J, Hargittai P, Korecz L (2005). Modification of cotton-celluloseby preirradiation grafting. Nucl InstrumMeth B, 236(1–4): 259–265. doi:10.1016/j.nimb.2005.03.248
27. Yang G, Zhang L, Cao X, Liu Y (2002). Structure and microporous formation of cellulose/silk fibroin blendmembranes Part II. Effect of post-treatment by alkali.J Membrane Sci, 210(2): 379–387. doi:10.1016/S0376-7388(02)00419-2
28. Zhang Y H P, Lynd L R (2003). Cellodextrinpreparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem, 322(2): 225–232. doi:10.1016/j.ab.2003.07.021
29. Zugenmaier P (2001). Conformation and packing of carious crystalline cellulosefibers. Prog Polym Sci, 26(9): 1341–1417. doi:10.1016/S0079-6700(01)00019-3