PDF
(136KB)
Abstract
Responses of the photosynthetic characteristics to variation in CO2 concentration and temperature of Ginkgo biloba, Eucommia ulmoides, Magnolia denudata and Tilia japonica were measured during the peak growing season. The results show that the ambient CO2 concentration could not meet the requirements for photosynthesis of these four species. The optimal temperatures for photosynthesis were lower than the average daytime air temperature. Hence, the photosynthesis of these four species was restricted by the low CO2 concentration and high daytime air temperature at the time of measurement. Marked enhancements in the net photosynthetic rate were found in all four species when the CO2 concentration was doubled. When the dependency on CO2 and temperature were examined simultaneously, it was seen that for increased CO2 concentrations there was a shift in the optimum temperature for M. denudata and T. japonica towards higher temperatures. Due to their independence on CO2 concentrations, this trend could not be found in the G. biloba and E. ulmoides data sets. The stomatal conductance (Gs) was sensitive to a vapor pressure deficit (VPD) which in turn was sensitive to temperature. An increase in temperature would cause the VPD to increase and plants might be assumed to react by reducing their stomatal apertures. The effect on stomatal resistance would be most significant at high temperatures. The restriction to stomatal conductance for these four species would increase if CO2 concentrations were elevated at the same temperature.
Keywords
photosynthesis
/
CO2 concentration
/
temperature
/
vapor pressure deficit
/
stomatal conductance
Cite this article
Download citation ▾
null.
Photosynthetic response to variation in CO concentrations and temperature of four broad-leaved
trees in Beijing region.
Front. For. China, 2008, 3(3): 364-368 DOI:10.1007/s11461-008-0046-3