Frontiers of Engineering Management >
Integrating operations research into green logistics: A review
Received date: 27 Feb 2023
Revised date: 06 Jun 2023
Accepted date: 19 Jun 2023
Copyright
Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.
Key words: green logistics; operations research; environment; literature review
Yiwei WU , Shuaian WANG , Lu ZHEN , Gilbert LAPORTE . Integrating operations research into green logistics: A review[J]. Frontiers of Engineering Management, 2023 , 10(3) : 517 -533 . DOI: 10.1007/s42524-023-0265-1
1 |
Abouee-Mehrizi, H Baron, O Berman, O Chen, D (2021). Adoption of electric vehicles in car sharing market. Production and Operations Management, 30( 1): 190–209
|
2 |
Ahani, P Arantes, A Melo, S (2016). A portfolio approach for optimal fleet replacement toward sustainable urban freight transportation. Transportation Research Part D: Transport and Environment, 48: 357–368
|
3 |
Alkhayyal, B (2019). Corporate social responsibility practices in the US: Using reverse supply chain network design and optimization considering carbon cost. Sustainability, 11( 7): 2097
|
4 |
Asefi, H Shahparvari, S Chhetri, P Lim, S (2019). Variable fleet size and mix VRP with fleet heterogeneity in integrated solid waste management. Journal of Cleaner Production, 230: 1376–1395
|
5 |
Ata, B Lee, D Sönmez, E (2019). Dynamic volunteer staffing in multicrop gleaning operations. Operations Research, 67( 2): 295–314
|
6 |
Ayvaz, B Bolat, B Aydın, N (2015). Stochastic reverse logistics network design for waste of electrical and electronic equipment. Resources, Conservation and Recycling, 104: 391–404
|
7 |
Azadeh, K de Koster, R Roy, D (2019). Robotized and automated warehouse systems: Review and recent developments. Transportation Science, 53( 4): 917–945
|
8 |
Babaee, Tirkolaee E Aydın, N S (2021). A sustainable medical waste collection and transportation model for pandemics. Waste Management & Research, 39( 1_suppl): 34–44
|
9 |
Bagloee, S A Sarvi, M Wallace, M (2016). Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area. Transportation Research Part A: Policy and Practice, 87: 102–121
|
10 |
BankerS (2013). Amazon and drones. Here is why it will work. Forbes
|
11 |
Baykasoğlu, A Subulan, K (2019). A fuzzy-stochastic optimization model for the intermodal fleet management problem of an international transportation company. Transportation Planning and Technology, 42( 8): 777–824
|
12 |
Behnke, M Kirschstein, T (2017). The impact of path selection on GHG emissions in city logistics. Transportation Research Part E: Logistics and Transportation Review, 106: 320–336
|
13 |
Behnke, M Kirschstein, T Bierwirth, C (2021). A column generation approach for an emission-oriented vehicle routing problem on a multigraph. European Journal of Operational Research, 288( 3): 794–809
|
14 |
Bektaş, T Laporte, G (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45( 8): 1232–1250
|
15 |
Bi, K Yang, M Zhou, X Zahid, L Zhu, Y Sun, Z (2020). Reducing carbon emissions from collaborative distribution: A case study of urban express in China. Environmental Science and Pollution Research International, 27( 14): 16215–16230
|
16 |
Bing, X de Keizer, M Bloemhof-Ruwaard, J M van der Vorst, J G (2014). Vehicle routing for the eco-efficient collection of household plastic waste. Waste Management, 34( 4): 719–729
|
17 |
Bing, X Groot, J J Bloemhof-Ruwaard, J M van der Vorst, J G (2013). Multimodal network design for sustainable household plastic recycling. International Journal of Physical Distribution & Logistics Management, 43( 5/6): 452–477
|
18 |
Biuki, M Kazemi, A Alinezhad, A (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260: 120842
|
19 |
Boostani, A Jolai, F Bozorgi-Amiri, A (2021). Designing a sustainable humanitarian relief logistics model in pre- and postdisaster management. International Journal of Sustainable Transportation, 15( 8): 604–620
|
20 |
Boronoos, M Mousazadeh, M Torabi, S A (2021). A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design. Environment, Development and Sustainability, 23( 3): 3368–3395
|
21 |
Bravo, M Rojas, L P Parada, V (2019). An evolutionary algorithm for the multi-objective pick-up and delivery pollution-routing problem. International Transactions in Operational Research, 26( 1): 302–317
|
22 |
BrundtlandCommission (BC) (1987). Our Common Future. Oxford: Oxford University Press
|
23 |
Burman, M Gershwin, S B Suyematsu, C (1998). Hewlett-Packard uses operations research to improve the design of a printer production line. Interfaces, 28( 1): 24–36
|
24 |
Chan, F T Wang, Z X Goswami, A Singhania, A Tiwari, M K (2020). Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. International Journal of Production Research, 58( 17): 5155–5174
|
25 |
Cheaitou, A Hamdan, S Larbi, R Alsyouf, I (2021). Sustainable traveling purchaser problem with speed optimization. International Journal of Sustainable Transportation, 15( 8): 621–640
|
26 |
Chen, K Xin, X Niu, X Zeng, Q (2020). Coastal transportation system joint taxation-subsidy emission reduction policy optimization problem. Journal of Cleaner Production, 247: 119096
|
27 |
Chen, W Liu, X Chen, D Pan, X (2019). Setting headways on a bus route under uncertain conditions. Sustainability, 11( 10): 2823
|
28 |
Chen, W Mes, M Schutten, M (2018). Multi-hop driver-parcel matching problem with time windows. Flexible Services and Manufacturing Journal, 30( 3): 517–553
|
29 |
Cheng, K Zou, Y Xin, X Gong, S (2020). Optimal lane expansion model for a battery electric vehicle transportation network considering range anxiety and demand uncertainty. Journal of Cleaner Production, 276: 124198
|
30 |
Cinar, D Gakis, K Pardalos, P M (2015). Reduction of CO2 emissions in cumulative multi-trip vehicle routing problems with limited duration. Environmental Modeling and Assessment, 20( 4): 273–284
|
31 |
Cire, A A van Hoeve, W J (2013). Multivalued decision diagrams for sequencing problems. Operations Research, 61( 6): 1411–1428
|
32 |
Conceição, L Homem, de Almeida Correia G Tavares, J P (2020). The reversible lane network design problem (RL-NDP) for smart cities with automated traffic. Sustainability, 12( 3): 1226
|
33 |
Custodio, L Machado, R (2020). Flexible automated warehouse: A literature review and an innovative framework. International Journal of Advanced Manufacturing Technology, 106( 1–2): 533–558
|
34 |
Dabia, S Demir, E van Woensel, T (2017). An exact approach for a variant of the pollution-routing problem. Transportation Science, 51( 2): 607–628
|
35 |
Dantzig, G B Ramser, J H (1959). The truck dispatching problem. Management Science, 6( 1): 80–91
|
36 |
de Koster, R Le-Duc, T Roodbergen, K J (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182( 2): 481–501
|
37 |
Dehghanian, F Mansour, S (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, Conservation and Recycling, 53( 10): 559–570
|
38 |
Dekker, R Bloemhof, J M Mallidis, I (2012). Operations research for green logistics: An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219( 3): 671–679
|
39 |
Demir, E Burgholzer, W Hrušovský, M Arıkan, E Jammernegg, W van, Woensel T (2016). A green intermodal service network design problem with travel time uncertainty. Transportation Research Part B: Methodological, 93: 789–807
|
40 |
Demir, E Hrušovský, M Jammernegg, W van, Woensel T (2019). Green intermodal freight transportation: Bi-objective modelling and analysis. International Journal of Production Research, 57( 19): 6162–6180
|
41 |
Dong, B Christiansen, M Fagerholt, K Chandra, S (2020). Design of a sustainable maritime multi-modal distribution network: Case study from automotive logistics. Transportation Research Part E: Logistics and Transportation Review, 143: 102086
|
42 |
Du, G Sun, C Weng, J (2016). Liner shipping fleet deployment with sustainable collaborative transportation. Sustainability, 8( 2): 165
|
43 |
Duque, J Barbosa-Póvoa, A P F Novais, A Q (2010). Design and planning of sustainable industrial networks: Application to a recovery network of residual products. Industrial & Engineering Chemistry Research, 49( 9): 4230–4248
|
44 |
Duthie, J Unnikrishnan, A (2014). Optimization framework for bicycle network design. Journal of Transportation Engineering, 140( 7): 04014028
|
45 |
Dutta, P Mishra, A Khandelwal, S Katthawala, I (2020). A multiobjective optimization model for sustainable reverse logistics in Indian e-commerce market. Journal of Cleaner Production, 249: 119348
|
46 |
Elhedhli, S Merrick, R (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17( 5): 370–379
|
47 |
El Korchi, A Millet, D (2011). Designing a sustainable reverse logistics channel: The 18 generic structures framework. Journal of Cleaner Production, 19( 6–7): 588–597
|
48 |
Erdoğan, S Miller-Hooks, E (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48( 1): 100–114
|
49 |
Eshtehadi, R Fathian, M Demir, E (2017). Robust solutions to the pollution-routing problem with demand and travel time uncertainty. Transportation Research Part D: Transport and Environment, 51: 351–363
|
50 |
Eun, J Song, B D Lee, S Lim, D E (2019). Mathematical investigation on the sustainability of UAV logistics. Sustainability, 11( 21): 5932
|
51 |
European Environment Agency (EEA) (2019). Freight transport volume and modal split within the EU
|
52 |
European Environment Agency (EEA) (2020). Greenhouse gas emissions from transport in Europe
|
53 |
Eydi, A Alavi, H (2019). Vehicle routing problem in reverse logistics with split demands of customers and fuel consumption optimization. Arabian Journal for Science and Engineering, 44( 3): 2641–2651
|
54 |
Fatnassi, E Chaouachi, J Klibi, W (2015). Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics. Transportation Research Part B: Methodological, 81: 440–460
|
55 |
Frade, I Ribeiro, A (2015). Bike-sharing stations: A maximal covering location approach. Transportation Research Part A: Policy and Practice, 82: 216–227
|
56 |
Franceschetti, A Demir, E Honhon, D van Woensel, T Laporte, G Stobbe, M (2017). A metaheuristic for the time-dependent pollution-routing problem. European Journal of Operational Research, 259( 3): 972–991
|
57 |
Fukasawa, R He, Q Song, Y (2016). A branch-cut-and-price algorithm for the energy minimization vehicle routing problem. Transportation Science, 50( 1): 23–34
|
58 |
Goeke, D (2019). Granular tabu search for the pickup and delivery problem with time windows and electric vehicles. European Journal of Operational Research, 278( 3): 821–836
|
59 |
Gong, L Li, Y Xu, D (2019). Combinational scheduling model considering multiple vehicle sizes. Sustainability, 11( 19): 5144
|
60 |
Gong, Y de Koster, R B (2011). A review on stochastic models and analysis of warehouse operations. Logistics Research, 3( 4): 191–205
|
61 |
Govindan, K Bouzon, M (2018). From a literature review to a multi-perspective framework for reverse logistics barriers and drivers. Journal of Cleaner Production, 187: 318–337
|
62 |
Govindan, K Jafarian, A Khodaverdi, R Devika, K (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152: 9–28
|
63 |
Govindan, K Jha, P C Garg, K (2016). Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing. International Journal of Production Research, 54( 5): 1463–1486
|
64 |
Granada-Echeverri, M Cubides, L Bustamante, J (2020). The electric vehicle routing problem with backhauls. International Journal of Industrial Engineering Computations, 11( 1): 131–152
|
65 |
Gu, J Goetschalckx, M McGinnis, L F (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177( 1): 1–21
|
66 |
Gu, J Goetschalckx, M McGinnis, L F (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203( 3): 539–549
|
67 |
Gupta, P Govindan, K Mehlawat, M K Khaitan, A (2022). Multiobjective capacitated green vehicle routing problem with fuzzy time-distances and demands split into bags. International Journal of Production Research, 60( 8): 2369–2385
|
68 |
Gupta, V Radovanović, A (2020). Interior-point-based online stochastic bin packing. Operations Research, 68( 5): 1474–1492
|
69 |
Hajimiragha, A H Canizares, C A Fowler, M W Moazeni, S Elkamel, A (2011). A robust optimization approach for planning the transition to plug-in hybrid electric vehicles. IEEE Transactions on Power Systems, 26( 4): 2264–2274
|
70 |
Heilig, L Lalla-Ruiz, E Voß, S (2017). Multi-objective inter-terminal truck routing. Transportation Research Part E: Logistics and Transportation Review, 106: 178–202
|
71 |
HinesA (2008). How operations research drives success at P&G. CBS News
|
72 |
Holland, C Levis, J Nuggehalli, R Santilli, B Winters, J (2017). UPS optimizes delivery routes. Interfaces, 47( 1): 8–23
|
73 |
Hu, W Dong, J Hwang, B G Ren, R Chen, Z (2020). Network planning of urban underground logistics system with hub-and-spoke layout: Two phase cluster-based approach. Engineering, Construction, and Architectural Management, 27( 8): 2079–2105
|
74 |
Hua, G Cheng, T C E Wang, S (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132( 2): 178–185
|
75 |
Institute for Operations Research and the Management Sciences (INFORMS) (2021). Consider a career in operations research and analytics!
|
76 |
Jabir, E Panicker, V V Sridharan, R (2017). Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem. Transportation Research Part D: Transport and Environment, 57: 422–457
|
77 |
JDX
|
78 |
Ji, S F Luo, R J (2017). A hybrid estimation of distribution algorithm for multi-objective multi-sourcing intermodal transportation network design problem considering carbon emissions. Sustainability, 9( 7): 1133
|
79 |
Ji, Y Tang, Y Shen, Y Du, Y Wang, W (2020). An integrated approach for tram prioritization in signalized corridors. IEEE Transactions on Intelligent Transportation Systems, 21( 6): 2386–2395
|
80 |
Jiménez, F Román, A (2016). Urban bus fleet-to-route assignment for pollutant emissions minimization. Transportation Research Part E: Logistics and Transportation Review, 85: 120–131
|
81 |
Kang, M W Jha, M K Buddharaju, R (2014). Rail transit route optimization model for rail infrastructure planning and design: Case study of Saint Andrews, Scotland. Journal of Transportation Engineering, 140( 1): 1–11
|
82 |
KaraIKaraB YYetisM K (2007). Energy minimizing vehicle routing problem. In: Proceedings of the 1st International Conference on Combinatorial Optimization and Applications. Xi’an: Springer, 62–71
|
83 |
Karimi, H Ghadirifaraz, B Boushehri, S N S Hosseininasab, S M Rafiei, N (2022). Reducing traffic congestion and increasing sustainability in special urban areas through one-way traffic reconfiguration. Transportation, 49: 37–60
|
84 |
Kazemian, I Rabbani, M Farrokhi-Asl, H (2018). A way to optimally solve a green time-dependent vehicle routing problem with time windows. Matemática Aplicada e Computacional, 37( 3): 2766–2783
|
85 |
Kleindorfer, P R Singhal, K van Wassenhove, L N (2005). Sustainable operations management. Production and Operations Management, 14( 4): 482–492
|
86 |
Küçükoğlu, İ Ene, S Aksoy, A Öztürk, N (2015). A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environmental Science and Pollution Research International, 22( 5): 3279–3297
|
87 |
Kumar, S Narkhede, B E Jain, K (2021). Revisiting the warehouse research through an evolutionary lens: A review from 1990 to 2019. International Journal of Production Research, 59( 11): 3470–3492
|
88 |
Kumar, V N S A Kumar, V Brady, M Garza-Reyes, J A Simpson, M (2017). Resolving forward-reverse logistics multi-period model using evolutionary algorithms. International Journal of Production Economics, 183: 458–469
|
89 |
Kuppusamy, S Magazine, M J Rao, U (2017). Electric vehicle adoption decisions in a fleet environment. European Journal of Operational Research, 262( 1): 123–135
|
90 |
Lee, D H Dong, M Bian, W (2010). The design of sustainable logistics network under uncertainty. International Journal of Production Economics, 128( 1): 159–166
|
91 |
Lee, S Prabhu, V V (2016). Just-in-time delivery for green fleets: A feedback control approach. Transportation Research Part D: Transport and Environment, 46: 229–245
|
92 |
Letnik, T Mencinger, M Peruš, I (2020). Flexible assignment of loading bays for efficient vehicle routing in urban last mile delivery. Sustainability, 12( 18): 7500
|
93 |
Li, J Q Head, K L (2009). Sustainability provisions in the bus-scheduling problem. Transportation Research Part D: Transport and Environment, 14( 1): 50–60
|
94 |
Li, X Kuang, H Hu, Y (2019). Carbon mitigation strategies of port selection and multimodal transport operations: A case study of northeast China. Sustainability, 11( 18): 4877
|
95 |
Li, Y Lu, S (2021). Study on the optimization of urban passenger traffic structure based on multi-objective linear programming: A case study of Beijing. Environmental Science and Pollution Research International, 28( 8): 10192–10206
|
96 |
Li, Y Yang, W Huang, B (2020). Impact of UAV delivery on sustainability and costs under traffic restrictions. Mathematical Problems in Engineering, 9437605
|
97 |
Li, Z Huang, J (2018). How to effectively improve pesticide waste governance: A perspective of reverse logistics. Sustainability, 10( 10): 3622
|
98 |
Lien, R W Iravani, S M Smilowitz, K R (2014). Sequential resource allocation for nonprofit operations. Operations Research, 62( 2): 301–317
|
99 |
Lin, Y Jia, H Zou, B Miao, H Wu, R Tian, J Wang, G (2021). Multiobjective environmentally sustainable optimal design of dedicated connected autonomous vehicle lanes. Sustainability, 13( 6): 3454
|
100 |
Liu, D Deng, Z Sun, Q Wang, Y Wang, Y (2019). Design and freight corridor-fleet size choice in collaborative intermodal transportation network considering economies of scale. Sustainability, 11( 4): 990
|
101 |
Liu, G Li, L Chen, J Ma, F (2020a). Inventory sharing strategy and optimization for reusable transport items. International Journal of Production Economics, 228: 107742
|
102 |
Liu, W Wan, Z Wan, Z Gong, B (2020b). Sustainable recycle network of heterogeneous pharmaceuticals with governmental subsidies and service-levels of third-party logistics by bi-level programming approach. Journal of Cleaner Production, 249: 119324
|
103 |
Lu, C H Y Morrell, P (2001). Evaluation and implications of environmental charges on commercial flights. Transport Reviews, 21( 3): 377–395
|
104 |
Luo, H Zhao, F Chen, W Q Cai, H (2020). Optimizing bike sharing systems from the life cycle greenhouse gas emissions perspective. Transportation Research Part C: Emerging Technologies, 117: 102705
|
105 |
Luss, H (1982). Operations research and capacity expansion problems: A survey. Operations Research, 30( 5): 907–947
|
106 |
Lv, Y Wang, S Gao, Z Cheng, G Huang, G He, Z (2022). A sustainable road pricing oriented bilevel optimization approach under multiple environmental uncertainties. International Journal of Sustainable Transportation, 16( 2): 152–165
|
107 |
Macrina, G Laporte, G Guerriero, F Di Puglia Pugliese, L (2019). An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. European Journal of Operational Research, 276( 3): 971–982
|
108 |
Marrekchi, E Besbes, W Dhouib, D Demir, E (2021). A review of recent advances in the operations research literature on the green routing problem and its variants. Annals of Operations Research, 304( 1–2): 529–574
|
109 |
McKinnonABrowneMWhiteingAPiecykM (2015). Green Logistics: Improving the Environmental Sustainability of Logistics. New Delhi: Kogan Page Publishers
|
110 |
Mrabti, N Hamani, N Delahoche, L (2021). The pooling of sustainable freight transport. Journal of the Operational Research Society, 72( 10): 2180–2195
|
111 |
Naoum-Sawaya, J Cogill, R Ghaddar, B Sajja, S Shorten, R Taheri, N Tommasi, P Verago, R Wirth, F (2015). Stochastic optimization approach for the car placement problem in ridesharing systems. Transportation Research Part B: Methodological, 80: 173–184
|
112 |
Nenes, G Nikolaidis, Y (2012). A multi-period model for managing used product returns. International Journal of Production Research, 50( 5): 1360–1376
|
113 |
Neyestani, N Damavandi, M Y Shafie-Khah, M Contreras, J Catalão, J P (2015). Allocation of plug-in vehicles’ parking lots in distribution systems considering network-constrained objectives. IEEE Transactions on Power Systems, 30( 5): 2643–2656
|
114 |
Niu, Y Yang, Z Chen, P Xiao, J (2018). Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. Journal of Cleaner Production, 171: 962–971
|
115 |
Pamučar, D Gigović, L Ćirović, G Regodić, M (2016). Transport spatial model for the definition of green routes for city logistics centers. Environmental Impact Assessment Review, 56: 72–87
|
116 |
Parker, N Fan, Y Ogden, J (2010). From waste to hydrogen: An optimal design of energy production and distribution network. Transportation Research Part E: Logistics and Transportation Review, 46( 4): 534–545
|
117 |
Parsa, M Nookabadi, A S Flapper, S D Atan, Z (2019). Green hub-and-spoke network design for aviation industry. Journal of Cleaner Production, 229: 1377–1396
|
118 |
Plaza-Úbeda, J A Abad-Segura, E de, Burgos-Jiménez J Boteva-Asenova, A Belmonte-Ureña, L J (2021). Trends and new challenges in the green supply chain: The reverse logistics. Sustainability, 13( 1): 331
|
119 |
Psaraftis, H N Kontovas, C A (2014). Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 44: 52–69
|
120 |
Pternea, M Kepaptsoglou, K Karlaftis, M G (2015). Sustainable urban transit network design. Transportation Research Part A: Policy and Practice, 77: 276–291
|
121 |
Pucher, J Komanoff, C Schimek, P (1999). Bicycling renaissance in North America? Recent trends and alternative policies to promote bicycling. Transportation Research Part A: Policy and Practice, 33( 7–8): 625–654
|
122 |
Rahimi, M Baboli, A Rekik, Y (2017). Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria. Transportation Research Part E: Logistics and Transportation Review, 101: 59–83
|
123 |
Ramos, T R P Gomes, M I Barbosa-Póvoa, A P (2014a). Economic and environmental concerns in planning recyclable waste collection systems. Transportation Research Part E: Logistics and Transportation Review, 62: 34–54
|
124 |
Ramos, T R P Gomes, M I Barbosa-Póvoa, A P (2014b). Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns. Omega, 48: 60–74
|
125 |
Reddy, K S Panwar, L K Kumar, R Panigrahi, B K (2016). Distributed resource scheduling in smart grid with electric vehicle deployment using fireworks algorithm. Journal of Modern Power Systems and Clean Energy, 4( 2): 188–199
|
126 |
Ren, H Wang, Z Chen, Y (2020). Optimal express bus routes design with limited-stop services for long-distance commuters. Sustainability, 12( 4): 1669
|
127 |
Roberti, R Wen, M (2016). The electric traveling salesman problem with time windows. Transportation Research Part E: Logistics and Transportation Review, 89: 32–52
|
128 |
Rodriguez-Roman, D Ritchie, S G (2020). Surrogate-based optimization for multi-objective toll design problems. Transportation Research Part A: Policy and Practice, 137: 485–503
|
129 |
Safdar, N Khalid, R Ahmed, W Imran, M (2020). Reverse logistics network design of e-waste management under the triple bottom line approach. Journal of Cleaner Production, 272: 122662
|
130 |
Saka, O C Gürel, S van, Woensel T (2017). Using cost change estimates in a local search heuristic for the pollution routing problem. OR-Spektrum, 39( 2): 557–587
|
131 |
Santos, M J Martins, S Amorim, P Almada-Lobo, B (2021). A green lateral collaborative problem under different transportation strategies and profit allocation methods. Journal of Cleaner Production, 288: 125678
|
132 |
Sbihi, A Eglese, R W (2010). Combinatorial optimization and green logistics. Annals of Operations Research, 175( 1): 159–175
|
133 |
Schiffer, M Klein, P S Laporte, G Walther, G (2021). Integrated planning for electric commercial vehicle fleets: A case study for retail mid-haul logistics networks. European Journal of Operational Research, 291( 3): 944–960
|
134 |
Schiffer, M Walther, G (2018). Strategic planning of electric logistics fleet networks: A robust location-routing approach. Omega, 80: 31–42
|
135 |
Shah, B Khanzode, V (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26( 3): 346–378
|
136 |
Shah, P J Anagnostopoulos, T Zaslavsky, A Behdad, S (2018). A stochastic optimization framework for planning of waste collection and value recovery operations in smart and sustainable cities. Waste Management, 78: 104–114
|
137 |
Silver, E A (1981). Operations research in inventory management: A review and critique. Operations Research, 29( 4): 628–645
|
138 |
Solano, C M Roldán, R F Carvajal, M F Gómez, A J Mattos, S Vives, J I (2021). Reverse logistic processes for glass container reuse. Environmental Processes, 8( 1): 397–411
|
139 |
Srivastava, S K (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9( 1): 53–80
|
140 |
Stasko, T H Gao, H O (2010). Reducing transit fleet emissions through vehicle retrofits, replacements, and usage changes over multiple time periods. Transportation Research Part D: Transport and Environment, 15( 5): 254–262
|
141 |
State Council Information Office (SCIO) of the PRC (2016). Notice on further encouraging the development of multimodal transport (in Chinese)
|
142 |
Staudt, F H Alpan, G Di Mascolo, M Rodriguez, C M T (2015). Warehouse performance measurement: A literature review. International Journal of Production Research, 53( 18): 5524–5544
|
143 |
Stiglic, M Agatz, N Savelsbergh, M W P Gradisar, M (2016). Making dynamic ride-sharing work: The impact of driver and rider flexibility. Transportation Research Part E: Logistics and Transportation Review, 91: 190–207
|
144 |
SumagaysayL (2020). The pandemic has more than doubled food-delivery apps’ business. Now what? MarketWatch
|
145 |
Sun, Y Li, X Liang, X Zhang, C (2019). A bi-objective fuzzy credibilistic chance-constrained programming approach for the hazardous materials road-rail multimodal routing problem under uncertainty and sustainability. Sustainability, 11( 9): 2577
|
146 |
Suzuki, Y Kabir, Q S (2015). Green vehicle routing for small motor carriers. Transportation Journal, 54( 2): 186–212
|
147 |
Tajik, N Tavakkoli-Moghaddam, R Vahdani, B Mousavi, S M (2014). A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty. Journal of Manufacturing Systems, 33( 2): 277–286
|
148 |
Tavassoli, K Tamannaei, M (2020). Hub network design for integrated bike-and-ride services: A competitive approach to reducing automobile dependence. Journal of Cleaner Production, 248: 119247
|
149 |
Tirkolaee, E B Hosseinabadi, A A R Soltani, M Sangaiah, A K Wang, J (2018). A hybrid genetic algorithm for multi-trip green capacitated arc routing problem in the scope of urban services. Sustainability, 10( 5): 1366
|
150 |
Tirkolaee, E B Mahdavi, I Esfahani, M M S Weber, G W (2020). A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Management, 102: 340–350
|
151 |
United Nations Economic Commission for Europe (UNECE) (2021). Climate change and sustainable transport
|
152 |
United Nations (UN) (2021). Global e-commerce jumps to $26.7 trillion, fuelled by COVID-19
|
153 |
van Woensel, T Creten, R Vandaele, N (2001). Managing the environmental externalities of traffic logistics: The issue of emissions. Production and Operations Management, 10( 2): 207–223
|
154 |
Verma, M Verter, V (2010). A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods. European Journal of Operational Research, 202( 3): 696–706
|
155 |
Vidal, T Laporte, G Matl, P (2020). A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 286( 2): 401–416
|
156 |
Wang, S Liu, M Chu, F (2020a). Approximate and exact algorithms for an energy minimization traveling salesman problem. Journal of Cleaner Production, 249: 119433
|
157 |
Wang, Y Assogba, K Fan, J Xu, M Liu, Y Wang, H (2019a). Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 232: 12–29
|
158 |
Wang, Y Ma, X Liu, M Gong, K Liu, Y Xu, M Wang, Y (2017). Cooperation and profit allocation in two-echelon logistics joint distribution network optimization. Applied Soft Computing, 56: 143–157
|
159 |
Wang, Y Peng, S Assogba, K Liu, Y Wang, H Xu, M Wang, Y (2018). Implementation of cooperation for recycling vehicle routing optimization in two-echelon reverse logistics networks. Sustainability, 10( 5): 1358
|
160 |
Wang, Y Peng, S Zhou, X Mahmoudi, M Zhen, L (2020b). Green logistics location-routing problem with eco-packages. Transportation Research Part E: Logistics and Transportation Review, 143: 102118
|
161 |
Wang, Y Zhou, Y Yan, X (2019b). Optimizing train-set circulation plan in high-speed railway networks using genetic algorithm. Journal of Advanced Transportation, 8526953
|
162 |
Wang, Z Zhou, L Guo, B Chen, X Zhou, H (2021). An efficient hybrid approach for scheduling the train timetable for the longer distance high-speed railway. Sustainability, 13( 5): 2538
|
163 |
World Bank (WB) (2018). What a waste 2.0: A global snapshot of solid waste management to 2050
|
164 |
Wu, L Wang, S (2020). The shore power deployment problem for maritime transportation. Transportation Research Part E: Logistics and Transportation Review, 135: 101883
|
165 |
Wu, Z Cai, X Li, M Hu, L (2022). Optimal mixed charging schemes for traffic congestion management with subsidy to new energy vehicle users. International Transactions in Operational Research, 29( 1): 6–23
|
166 |
Xi, H He, L Zhang, Y Wang, Z (2020). Bounding the efficiency gain of differentiable road pricing for EVs and GVs to manage congestion and emissions. PLoS One, 15( 7): e0234204
|
167 |
Xiao, Y Konak, A (2017). A genetic algorithm with exact dynamic programming for the green vehicle routing & scheduling problem. Journal of Cleaner Production, 167: 1450–1463
|
168 |
Yener, F Yazgan, H R (2019). Optimal warehouse design: Literature review and case study application. Computers & Industrial Engineering, 129: 1–13
|
169 |
Yi, W Phipps, R Wang, H (2020). Sustainable ship loading planning for prefabricated products in the construction industry. Sustainability, 12( 21): 8905
|
170 |
Zarbakhshnia, N Kannan, D Mavi, R K Soleimani, H (2020). A novel sustainable multi-objective optimization model for forward and reverse logistics system under demand uncertainty. Annals of Operations Research, 295( 2): 843–880
|
171 |
Zhalechian, M Tavakkoli-Moghaddam, R Zahiri, B Mohammadi, M (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89: 182–214
|
172 |
Zhang, P Liu, Y Yang, G Zhang, G (2022). A multi-objective distributionally robust model for sustainable last mile relief network design problem. Annals of Operations Research, 309: 689–730
|
173 |
Zhao, Y Fan, Y Zhou, J Kuang, H (2019). Bi-objective optimization of vessel speed and route for sustainable coastal shipping under the regulations of emission control areas. Sustainability, 11( 22): 6281
|
174 |
Zhao, Y Xue, Q Zhang, X (2018). Stochastic empty container repositioning problem with CO2 emission considerations for an intermodal transportation system. Sustainability, 10( 11): 4211
|
175 |
Zhen, L Li, H (2022). A literature review of smart warehouse operations management. Frontiers of Engineering Management, 9( 1): 31–55
|
176 |
Zhen, L Wu, Y Wang, S Laporte, G (2020). Green technology adoption for fleet deployment in a shipping network. Transportation Research Part B: Methodological, 139: 388–410
|
177 |
Zhen, L Wu, Y Wang, S Yi, W (2021). Crowdsourcing mode evaluation for parcel delivery service platforms. International Journal of Production Economics, 235: 108067
|
178 |
Zhou, W Fan, W You, X Deng, L (2019a). Demand-oriented train timetabling integrated with passenger train-booking decisions. Sustainability, 11( 18): 4932
|
179 |
Zhou, X Wang, Y Ji, X Cottrill, C (2019b). Coordinated control strategy for multi-line bus bunching in common corridors. Sustainability, 11( 22): 6221
|
180 |
Zhou, X Zhou, Y (2015). Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing. Resources, Conservation and Recycling, 100: 58–69
|
/
〈 | 〉 |