IN2CLOUD: A novel concept for collaborative management of big railway data

Jing LIN , Uday KUMAR

Front. Eng ›› 2017, Vol. 4 ›› Issue (4) : 428 -436.

PDF (1513KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (4) : 428 -436. DOI: 10.15302/J-FEM-2017048
RESEARCH ARTICLE
RESEARCH ARTICLE

IN2CLOUD: A novel concept for collaborative management of big railway data

Author information +
History +
PDF (1513KB)

Abstract

In the EU Horizon 2020 Shift2Rail Multi-Annual Action Plan, the challenge of railway maintenance is generating knowledge from data and/or information. Therefore, we promote a novel concept called “IN2CLOUD,” which comprises three sub-concepts, to address this challenge: 1) A hybrid cloud, 2) an intelligent cloud with hybrid cloud learning, and 3) collaborative management using asset-related data acquired from the intelligent hybrid cloud. The concept is developed under the assumption that organizations want/need to learn from each other (including domain knowledge and experience) but do not want to share their raw data or information. IN2CLOUD will help the movement of railway industry systems from “local” to “global” optimization in a collaborative way. The development of cutting-edge intelligent hybrid cloud-based solutions, including information technology (IT) solutions and related methodologies, will enhance business security, economic sustainability, and decision support in the field of intelligent asset management of railway assets.

Keywords

railway / intelligent asset management / collaborative learning / big data / hybrid cloud / Bayesian

Cite this article

Download citation ▾
Jing LIN, Uday KUMAR. IN2CLOUD: A novel concept for collaborative management of big railway data. Front. Eng, 2017, 4(4): 428-436 DOI:10.15302/J-FEM-2017048

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asplund MLin J (2016). Evaluating the measurement capability of a wheel profile measurement system by using GR&R. Measurement92: 19–27

[2]

Ben-Daya MKumar UMurthy D N P (2015). Introduction to Maintenance Engineering: Modelling, Optimization and Management. New York: Wiley

[3]

Cai BLiu Y HFan QZhang Y WYu S LLiu Z KDong X (2013). Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance. Engineering Applications of Artificial Intelligence26(10): 2661–2672

[4]

Creamer L (2017). The Best Asset Management Services of 2017. Retrieved from 160;2017-9-10

[5]

Galar DKumar UKarim R (2017). Big data in railway operations and maintenance. Globe Railway Review4: 11–14

[6]

Figueres-Esteban MHughes PGulijk  C (2016). Visual analytics for text-based railway incident reports. Journal of Safety Science89: 72–76

[7]

Karim RWesterberg JGalar DKumar U (2016). Maintenance analytics—The new know in maintenance. IFAC-PapersOnLine49(28): 214–219

[8]

Lee JKao HYang S (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP16: 3–8

[9]

Lee JYang SLapira EKao H AYen N (2013). Methodology and framework of a cloud-based prognostics and health management system for manufacturing industry. Chemical Engineering Transactions33: 205–210

[10]

Lin JAsplund M (2015). Bayesian semi-parametric analysis for locomotive wheel degradation using gamma frailties. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit229(3): 237–247

[11]

Lin JAsplund MParida A (2014). Reliability analysis for degradation of locomotive wheels using parametric Bayesian approach. Quality and Reliability Engineering International30(5): 657–667

[12]

Lin JPulido JAsplund M (2015). Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study. Reliability Engineering & System Safety134: 143–156

[13]

Meeker WHong Y (2014). Reliability meets Big data: Opportunities and challenges. Quality Engineering26: 102–116

[14]

Thaduri AGalar DKumar U (2015). Railway assets: A potential domain for Big data analytics. Procedia Computer Science53: 457–467

[15]

Yang SBagheri BKao HLee J (2015). A unified framework and platform for designing of cloud-based machine health monitoring and manufacturing systems. Journal of Manufacturing Science and Engineering137(4): 040914

[16]

Zhang L WLin JKarim R (2015). An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection. Reliability Engineering & System Safety142: 482–497

[17]

Zhang L WLin JKarim R (2017). Sliding window-based fault detection from high-dimensional data streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems47(2): 289–303

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (1513KB)

8175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/