Multi-class dynamic network traffic flow propagation model with physical queues

Yanfeng LI , Jun LI

Front. Eng ›› 2017, Vol. 4 ›› Issue (4) : 399 -407.

PDF (649KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (4) : 399 -407. DOI: 10.15302/J-FEM-2017041
RESEARCH ARTICLE
RESEARCH ARTICLE

Multi-class dynamic network traffic flow propagation model with physical queues

Author information +
History +
PDF (649KB)

Abstract

This paper proposes an improved multi-class dynamic network traffic flow propagation model with a consideration of physical queues. Each link is divided into two areas: Free flow area and queue area. The vehicles of the same class are assumed to satisfy the first-in-first-out (FIFO) principle on the whole link, and the vehicles of the different classes also follow FIFO in the queue area but not in the free flow area. To characterize this phenomenon by numerical methods, the improved model is directly formulated in discrete time space. Numerical examples are developed to illustrate the unrealistic flows of the existing model and the performance of the improved model. This analysis can more realistically capture the traffic flow propagation, such as interactions between multi-class traffic flows, and the dynamic traffic interactions across multiple links.

Keywords

first-in-first-out (FIFO) / multi-class traffic / physical queues / traffic flow modeling

Cite this article

Download citation ▾
Yanfeng LI, Jun LI. Multi-class dynamic network traffic flow propagation model with physical queues. Front. Eng, 2017, 4(4): 399-407 DOI:10.15302/J-FEM-2017041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bliemer M (2007). Dynamic queuing and spillback in analytical multiclass dynamic network loading model. Transportation Research Record: Journal of the Transportation Research Board2029: 14–21

[2]

Daganzo C F (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4): 269–287

[3]

Daganzo C F (1995). The cell transmission model, Part II: Network traffic. Transportation Research Part B: Methodological29(2): 79–93

[4]

Huang H JLam W H K (2002). Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transportation Research Part B: Methodological36(3): 253–273

[5]

Huang H JLam W H K (2003). A multi-class dynamic user equilibrium model for queuing networks with advanced traveler information systems. Journal of Mathematical Modelling and Algorithms2(4): 349–377

[6]

Kuwahara MAkamatsu T (2001). Dynamic user optimal assignment with physical queues for a many-to-many OD pattern. Transportation Research Part B: Methodological35(5): 461–479

[7]

Leclercq LLaval J A (2007). A multiclass car-following rule based on the LWR model. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J P, Schreckenberg M, eds. Traffic and Granular Flow ’07. Berlin: Springer, 735–753

[8]

Levin M WBoyles S D (2016). A multi-class cell transmission model for shared human and autonomous vehicle roads. Transportation Research Part C, Emerging Technologies62: 103–116

[9]

Lighthill M JWhitham G B (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society229(1178): 317–345

[10]

Liu SDe Schutter BHellendoorn H (2013). Multi-class traffic flow and emission control for freeway networks. In: 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC). IEEE, 2223–2228

[11]

Liu SHellendoorn HDe Schutter B (2017). Model predictive control for freeway networks based on multi-class traffic flow and emission models. IEEE Transactions on Intelligent Transportation Systems18(2): 306–320

[12]

Lo  HRan BHongola B (1996). Multiclass dynamic traffic assignment model: Formulation and computational experiences. Transportation Research Record: Journal of the Transportation Research Board1537: 74–82

[13]

Lo H KSzeto W Y (2002a). A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transportation Research Part B: Methodological36(5): 421–443

[14]

Lo H KSzeto W Y (2002b). A cell-based dynamic traffic assignment model: formulation and properties. Mathematical and Computer Modelling35(7-8): 849–865

[15]

Lo H KSzeto W Y (2004). Modeling advanced traveler information services: Static versus dynamic paradigms. Transportation Research Part B: Methodological38(6): 495–515

[16]

Logghe SImmers L H (2008). Multi-class kinematic wave theory of traffic flow. Transportation Research Part B: Methodological42(6): 523–541

[17]

Newell G F (1993). A simplified theory of kinematic waves in highway traffic, Part I: General theory; Part II: Queuing at freeway bottlenecks; Part III: Multi-destination flows. Transportation Research Part B: Methodological27(4): 281–314

[18]

Nie X (2003). The study of dynamic user-equilibrium traffic assignment. Dissertation for the Doctoral Degree. Davis: University of California, 242–255

[19]

Ran BBoyce D (1996). Modeling Dynamic Transportation Network: An Intelligent Transportation System Oriented Approach. New York: Springer

[20]

Richards P I (1956). Shock waves on the highway. Operations Research4(1): 42–51

[21]

Szeto W YJiang YSumalee A (2011). A cell-based model for multi-class doubly stochastic dynamic traffic assignment. Computer-Aided Civil and Infrastructure Engineering26(8): 595–611

[22]

Tuerprasert KAswakul C (2010). Multiclass cell transmission model for heterogeneous mobility in general topology of road network. Journal of Intelligent Transport Systems14(2): 68–82

[23]

van Wageningen-Kessels FVan Lint HHoogendoorn SVuik K (2010). Lagrangian formulation of multiclass kinematic wave model. Transportation Research Record: Journal of the Transportation Research Board2188: 29–36

[24]

van Wageningen-Kessels F (2016). Framework to assess multiclass continuum traffic flow models. Transportation Research Record: Journal of the Transportation Research Board2553: 150–160

[25]

Wong G C KWong S C (2002). A multi-class traffic flow model—An extension of LWR model with heterogeneous drivers. Transportation Research Part A, Policy and Practice36(9): 827–841

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (649KB)

5372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/