Optimization of urban bus operation frequency under common route condition with rail transit

Bin YU, Sijia REN, Enze WU, Yifan ZHOU, Yunpeng WANG

PDF(714 KB)
PDF(714 KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (4) : 451-462. DOI: 10.15302/J-FEM-2017036
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization of urban bus operation frequency under common route condition with rail transit

Author information +
History +

Abstract

The overlap of bus and rail transit routes is common in China. This overlap provides passengers multiple choices for one trip. However, the availability of multiple options would cause uncertainty in the travel distribution of passengers. Given that buses and rail transits are becoming increasingly common, this paper aims to present the overlapped operation condition of bus and rail transit using a bi-level model from the perspective of bus operators. Frequency optimization model is established in the upper-level model. A heuristic algorithm called shuffled complex evolution (SCE-UA) method is used to solve the established frequency optimization model, and three other heuristic methods are compared with SCE-UA. A lower-level Logit model based on Agent simulation is set for traffic mode split. Data on the transit system in Dalian city are chosen as an example to test the feasibility of the model and the algorithm. Results show that as the overlapped optimization of bus route and rail transit routes changed primary bus frequency, the use of SCE-UA to solve such problems has evident advantages and feasibility; furthermore, changed bus frequency would improve bus operations.

Keywords

common route / bus operation frequency / bi-level model / Agent simulation / SCE-UA algorithm

Cite this article

Download citation ▾
Bin YU, Sijia REN, Enze WU, Yifan ZHOU, Yunpeng WANG. Optimization of urban bus operation frequency under common route condition with rail transit. Front. Eng, 2017, 4(4): 451‒462 https://doi.org/10.15302/J-FEM-2017036

References

[1]
Agrawal J, Mathew T V (2004). Transit route network design using parallel genetic algorithm. Journal of Computing in Civil Engineering, 18(3): 248–256
CrossRef Google scholar
[2]
Baaj M H, Mahmassani H S (1995). Hybrid route generation heuristic algorithm for the design of transit networks. Transportation Research Part C, Emerging Technologies, 3(1): 31–50
CrossRef Google scholar
[3]
Ben-Akiva M, Morikawa T (2002). Comparing ridership attraction of rail and bus. Transport Policy, 9(2): 107–116
CrossRef Google scholar
[4]
Blum J J, Mathew T V (2011). Intelligent agent optimization of urban bus transit system design. Journal of Computing in Civil Engineering, 25(5): 357–369
CrossRef Google scholar
[5]
Chakroborty P (2003). Genetic algorithms for optimal urban transit network design. Computer-Aided Civil and Infrastructure Engineering, 18(3): 184–200
CrossRef Google scholar
[6]
Chakroborty P, Deb K, Sharma R K (2001). Optimal fleet size distribution and scheduling of transit systems using genetic algorithms. Transportation Planning and Technology, 24(3): 209–225
CrossRef Google scholar
[7]
Chakroborty P, Deb K, Subrahmanyam P S (1995). Optimal scheduling of urban transit systems using genetic algorithms. Journal of Transportation Engineering, 121(6): 544–553
CrossRef Google scholar
[8]
Constantin I, Florian M (1995). Optimizing frequencies in a transit network: A nonlinear bi-level programming approach. International Transactions in Operational Research, 2(2): 149–164
CrossRef Google scholar
[9]
Duan Q, Sorooshian S, Gupta V (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4): 1015–1031
CrossRef Google scholar
[10]
Duan Q, Sorooshian S, Gupta V K (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3-4): 265–284
CrossRef Google scholar
[11]
Duan Q Y, Gupta V K, Sorooshian S (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3): 501–521
CrossRef Google scholar
[12]
Dubois D, Bel G, Llibre M (1979). A set of methods in transportation network synthesis and analysis. Journal of the Operational Research Society, 30(9): 797–808
CrossRef Google scholar
[13]
Erol K R, Levy R, Wentworth J (2000). Application of agent technology to traffic simulation. Strategic Planning, 1–5
[14]
Furth P G, Wilson N H M (1981). Setting frequencies on bus routes: Theory and practice. Transportation Research Record: Journal of the Transportation Research Board, (818): 1–7
[15]
Gershenson C (2001). Artificial societies of intelligent agents. Fundacion Arturo Rosenblueth Unpublished Thesis
[16]
González-Savignat M (2004). Will the high-speed train compete against the private vehicle. Transport Reviews, 24(3): 293–316
[17]
Guan H Z (2004). Disaggregate model-Traffic behavior analysis tools. China Communications Press, 12: 1–5
[18]
Han A F, Wilson N H M (1982). The allocation of buses in heavily utilized networks with overlapping routes. Transportation Research Part B: Methodological, 16(3): 221–232
CrossRef Google scholar
[19]
Holland J (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. Quarterly Review of Biology, 6(2): 126–137
[20]
Kuan S N, Ong H L, Ng K M (2006). Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Advances in Engineering Software, 37(6): 351–359
CrossRef Google scholar
[21]
Lam W H K, Cheung C Y, Poon Y F (1999). A study of passenger discomfort measures at the Hong Kong mass transit railway system. Journal of Advanced Transportation, 33(3): 389–399
CrossRef Google scholar
[22]
LeBlanc L J (1988). Transit system network design. Transportation Research Part B: Methodological, 22(5): 383–390
CrossRef Google scholar
[23]
Mandel B, Gaudry M, Rothengatter W (1992). Linear or nonlinear utility functions in logit models? The impact on german high-speed rail demand forecasts. Transportation Research Part B: Methodological, 28B(2): 91–101
[24]
Mohaymany A S, Gholami A (2010). Multimodal feeder network design problem: ant colony optimization approach. Journal of Transportation Engineering, 136(4): 323–331
CrossRef Google scholar
[25]
Nakagawa D, Hatoko M (2007). Reevaluation of Japanese high-speed rail construction: Recent situation of the north corridor Shinkansen and its way to completion. Transport Policy, 14(2): 150–164
CrossRef Google scholar
[26]
Nelder J A, Mead R (1965). A simplex method for function minimization. Computer Journal, 7(4): 308–313
CrossRef Google scholar
[27]
Nijkamp P, Reggiani A, Tritapepe T (1996). Modelling inter-urban transport flows in Italy: A comparison between neural network analysis and logit analysis. Transportation Research Part C: Emerging Technologies, 4(6): 323–338
CrossRef Google scholar
[28]
Nuzzolo A, Crisalli U, Gangemi F (2000). A behavioural choice model for the evaluation of railway supply and pricing policies. Transportation Research Part A, Policy and Practice, 34(5): 395–404
CrossRef Google scholar
[29]
Park S J (2005). Bus network scheduling with genetic algorithms and simulation. Dissertation for the Master Degree. Maryland: University of Maryland
[30]
Price W L (1987). Global optimization algorithms for a CAD workstation. Journal of Optimization Theory and Applications, 55(1): 133–146
CrossRef Google scholar
[31]
Pursula M (1999). Simulation of traffic systems-an overview. Journal of Geographic Information and Decision Analysis, 3(1): 1–8
[32]
Qu J, Jin Q L, Xu B Y (2008). Parameter identification theory of a complex model based on global optimization method. Science in China Series G: Physics. Mechanics and Astronomy, 51(11): 1722–1732
CrossRef Google scholar
[33]
Salzborn F J M (1972). Optimum bus scheduling. Transportation Science, 6(2): 137–148
CrossRef Google scholar
[34]
Salzborn F J M (1980). Scheduling bus systems with interchanges. Transportation Science, 14(3): 211–231
CrossRef Google scholar
[35]
Tom V M, Mohan S (2003). Transit route network design using frequency coded genetic algorithm. Journal of Transportation Engineering, 129(2): 186–195
CrossRef Google scholar
[36]
Verma A, Dhingra S L (2006). Developing integrated schedules for urban rail and feeder bus operation. Journal of Urban Planning and Development, 132(3): 138–146
CrossRef Google scholar
[37]
Yao B Z, Chen C, Cao Q, Jin L, Zhang M, Zhu H, Yu B (2017). Short-term traffic speed prediction for an urban corridor. Computer-Aided Civil and Infrastructure Engineering, 32(2): 154–169
CrossRef Google scholar
[38]
Yao B Z, Hu P, Lu X H, Gao J, Zhang M (2014). Transit network design based on travel time reliability. Transportation Research Part C: Emerging Technologies, 43: 233–248
CrossRef Google scholar
[39]
Yao B Z, Hu P, Yu L, Zhang M, Gao J (2015). Merged automobile maintenance part delivery problem using an improved artificial bee colony algorithm. Scientia Iranica, 22(3): 1258–1270
[40]
Yao B Z, Yu B, Hu P, Gao J, Zhang M (2016). An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Annals of Operations Research, 242(2): 303–320
CrossRef Google scholar
[41]
Yu B, Kong L, Sun Y, Yao B, Gao Z (2015). A bi-level programming for bus lane network design. Transportation Research Part C: Emerging Technologies, 55: 310–327
CrossRef Google scholar
[42]
Yu B, Lam W H K, Tam M L (2011). Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C: Emerging Technologies, 19(6): 1157–1170
CrossRef Google scholar
[43]
Yu B, Yang Z, Yao J (2010). Genetic algorithm for bus frequency optimization. Journal of Transportation Engineering, 136(6): 576–583
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(714 KB)

Accesses

Citations

Detail

Sections
Recommended

/