Multi-stage emergency medicine logistics system optimization based on survival probability

Ke WANG, Yixin LIANG, Lindu ZHAO

PDF(515 KB)
PDF(515 KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (2) : 221-228. DOI: 10.15302/J-FEM-2017020
RESEARCH ARTICLE
RESEARCH ARTICLE

Multi-stage emergency medicine logistics system optimization based on survival probability

Author information +
History +

Abstract

Using sudden cardiac deaths as an example and maximizing survival rate as the goal, this paper studies the influence of multi-stage medical logistics system optimization on the survival rate of sudden illness. A distribution model of survival is built, drone and ambulance arrival probability over time are discussed, a formula is proposed for maximum possible survival rate based on the probability of emergency medical logistics reaching the patient, and the results are analyzed using empirical data fitting distribution and numerical experiments performed with the model. The model is discussed as a reference point for management decision making by changing model parameters. Results show that compared to using current ambulance vehicles, ambulance drones delivering medical equipment for first aid on-site in emergencies can significantly increase survival rate, and the effect of collaborative multi-stage logistics optimization is better than that of any single stage logistics response optimization. Simulation results show that the medical rescue logistics service radius, speed, loading capacity and performance of ambulance drones impact the probability of survival, and there is an optimal service radius depending on the shape of probability distribution, which provides new information for management decisions.

Keywords

emergency medicine logistics / ambulance drone / survival probability / critical illness

Cite this article

Download citation ▾
Ke WANG, Yixin LIANG, Lindu ZHAO. Multi-stage emergency medicine logistics system optimization based on survival probability. Front. Eng, 2017, 4(2): 221‒228 https://doi.org/10.15302/J-FEM-2017020

References

[1]
Budge S, Ingolfsson A, Zerom D (2010). Empirical analysis of ambulance travel times: The case of Calgary emergency medical services. Management Science, 56(4): 716–723
CrossRef Google scholar
[2]
Capucci A, Aschieri D, Guerra F, Pelizzoni V, Nani S, Villani G Q, Bardy G H (2016). Community-based automated external defibrillator only resuscitation for out-of-hospital cardiac arrest patients. American Heart Journal, 172: 192–200
CrossRef Google scholar
[3]
Chen H, Zhang J J, Jun M A, Zhao Y C (2008). The survey on the capacity of reaction for emergency in Beijing. Academic Journal of PLA Postgraduate Medical School, 29(5): 392–393 (in Chinese)
[4]
Chong K, Henderson S G, Lewis M E (2016). The vehicle mix decision in emergency medical service systems. Manufacturing & Service Operations Management: M & SOM, 18(3): 347–360
CrossRef Google scholar
[5]
European Society of Cardiology (2013). Out-of-hospital cardiac arrest survival just 7 percent. Science Daily. https://www.sciencedaily.com/releases/2013/09/130901154147.htm, 2017-3-30
[6]
Fikar C, Gronalt M, Hirsch P (2016). A decision support system for coordinated disaster relief distribution. Expert Systems with Applications, 57: 104–116
CrossRef Google scholar
[7]
Gold L S, Fahrenbruch C E, Rea T D, Eisenberg M S (2010). The relationship between time to arrival of emergency medical services (EMS) and survival from out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation, 81(5): 622–625
CrossRef Google scholar
[8]
Gu M, Li Z H, He Z J, Zhao Z W, Liu S Q (2016). A meta-analysis of the success rates of heartbeat restoration within the platinum 10 min among outpatients suffering from sudden cardiac arrest in China. Military Medical Research, 3: 6
CrossRef Google scholar
[9]
Haidari L A, Brown S T, Ferguson M, Bancroft E, Spiker M, Wilcox A, Ambikapathi R, Sampath V, Connor D L, Lee B Y (2016). The economic and operational value of using drones to transport vaccines. Vaccine, 34(34): 4062–4067
CrossRef Google scholar
[10]
Hansen C M, Kragholm K, Granger C B, Pearson D A, Tyson C, Monk L, Corbett C, Nelson R D, Dupre M E, Fosbøl E L, Strauss B, Fordyce C B, McNally B, Jollis J G (2015). The role of bystanders, first responders, and emergency medical service providers in timely defibrillation and related outcomes after out-of-hospital cardiac arrest: Results from a statewide registry. Resuscitation, 96: 303– 309
CrossRef Google scholar
[11]
He M J, Xu L L, Mindy D (2016). Status of pre-hospital emergency medical service in China and abroad. Journal of Nursing Management, 16(1): 24–26 (in Chinese)
[12]
He S F, Huang Y, LI Q (2015). Application of quality control circle in the improvement of hospital emergency response rate in basic level hospitals. Nursing Practice and Research, 12(9): 148–150 (in Chinese)
[13]
Hua W, Zhang L F, Wu Y F, Liu X Q, Guo D S, Zhou H L, Gou Z P, Zhao L C, Niu H X, Chen K P, Mai J Z, Chu L N, Zhang S (2009). Incidence of sudden cardiac death in China. Journal of the American College of Cardiology, 54(12): 1110–1118
CrossRef Google scholar
[14]
Huang Q (2014). Correlation analysis between emergency cardiopulmonary resuscitation time window and the success rate of resuscitation. Chinese Journal of Medicinal Guide, 16(1): 62–63
[15]
Maxwell M S, Ni E C, Tong C, Henderson S G, Topaloglu H, Hunter S R (2014). A bound on the performance of an optimal ambulance redeployment policy. Operations Research, 62(5): 1014–1027
CrossRef Google scholar
[16]
MedSci (2013). Shenzhen sudden cardiac death patients survival rates less than 1 per thousand. http://www.medsci.cn/article/show_article.do?id=ddb71891830-2, 2017-3-30 (in Chinese)
[17]
Merghani A, Narain R, Sharma S (2013). Sudden cardiac death: Detecting the warning signs. Clinical Medicine, 13(6): 614–617
CrossRef Google scholar
[18]
Musolino G, Polimeni A, Rindone C, Vitetta A (2013). Travel time forecasting and dynamic routes design for emergency vehicles. Procedia: Social and Behavioral Sciences, 87: 193–202
CrossRef Google scholar
[19]
Nielsen A M, Folke F, Lippert F K, Rasmussen L S (2013). Use and benefits of public access defibrillation in a nation-wide network. Resuscitation, 84(4): 430–434
CrossRef Google scholar
[20]
Olshansky B (2016). Automatic external defibrillator-only resuscitation in cardiac arrest? The approach may be shocking! American Heart Journal, 172: 182–184
CrossRef Google scholar
[21]
Thiels C A, Aho J M, Zietlow S P, Jenkins D H (2015). Use of unmanned aerial vehicles for medical product transport. Air Medical Journal, 34(2): 104–108
CrossRef Google scholar
[22]
Van Barneveld T C, Bhulai S, Rd V D M (2017). A dynamic ambulance management model for rural areas: Computing redeployment actions for relevant performance measures. Health Care Management Science, 20(2): 165–186
[23]
Weisfeldt M L, Sitlani C M, Ornato J P, Rea T, Aufderheide T P, Davis D, Dreyer J, Hess E P, Jui J, Maloney J, Sopko G, Powell J, Nichol G, Morrison L J (2010). Survival after application of automatic external defibrillators before arrival of the emergency medical system. Journal of the American College of Cardiology, 55(16): 1713–1720
CrossRef Google scholar

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grant No. 71390333), the National Key Technology R&D Program of China during the 12th Five-Year Plan Period (Grant No. 2013BAD19B05).

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(515 KB)

Accesses

Citations

Detail

Sections
Recommended

/