Winner determination problem with loss-averse buyers in reverse auctions

Xiaohu QIAN, Min HUANG, Yangyang YU, Xingwei WANG

PDF(212 KB)
PDF(212 KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (2) : 212-220. DOI: 10.15302/J-FEM-2017019
RESEARCH ARTICLE
RESEARCH ARTICLE

Winner determination problem with loss-averse buyers in reverse auctions

Author information +
History +

Abstract

Reverse auctions have been widely adopted for purchasing goods and services. This paper considers a novel winner determination problem in a multiple-object reverse auction in which the buyer involves loss-averse behavior due to uncertain attributes. A corresponding winner determination model based on cumulative prospect theory is proposed. Due to the NP-hard characteristic, a loaded route strategy is proposed to ensure the feasibility of the model. Then, an improved ant colony algorithm that consists of a dynamic transition strategy and a Max-Min pheromone strategy is designed. Numerical experiments are conducted to illustrate the effectiveness of the proposed model and algorithm. We find that under the loaded route strategy, the improved ant colony algorithm performs better than the basic ant colony algorithm. In addition, the proposed model can effectively characterize the buyer’s loss-averse behavior.

Keywords

reverse auction / loss aversion / winner determination / improved ant colony algorithm

Cite this article

Download citation ▾
Xiaohu QIAN, Min HUANG, Yangyang YU, Xingwei WANG. Winner determination problem with loss-averse buyers in reverse auctions. Front. Eng, 2017, 4(2): 212‒220 https://doi.org/10.15302/J-FEM-2017019

References

[1]
Banerji A, Gupta N (2014). Detection, identification, and estimation of loss aversion: Evidence from an auction experiment. American Economic Journal: Microeconomics, 6(1): 91–133
CrossRef Google scholar
[2]
Cachon G P, Zhang F (2006). Procuring fast delivery: Sole sourcing with information asymmetry. Management Science, 52(6): 881–896
CrossRef Google scholar
[3]
De Boer L, Labro E, Morlacchi P (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7(2): 75–89
CrossRef Google scholar
[4]
De Vries S, Vohra R V (2003). Combinatorial auctions: A survey. INFORMS Journal on Computing, 15(3): 284–309
CrossRef Google scholar
[5]
Escudero L F, Landete M, Marín A (2009). A branch-and-cut algorithm for the winner determination problem. Decision Support Systems, 46(3): 649–659
CrossRef Google scholar
[6]
Hishamuddin H, Sarker R A, Essam D (2013). A recovery model for a two-echelon serial supply chain with consideration of transportation disruption. Computers & Industrial Engineering, 64(2): 552–561
CrossRef Google scholar
[7]
Ho W, Xu X, Dey P K (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1): 16–24
CrossRef Google scholar
[8]
Huang M, Qian X, Fang S C, Wang X (2016). Winner determination for risk aversion buyers in multi-attribute reverse auction. Omega, 59: 184–200
CrossRef Google scholar
[9]
Jackson C (1976). Technology for spectrum markets. Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA
[10]
Kahneman D, Tversky A (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2): 263–291
CrossRef Google scholar
[11]
Ma Z, Kwon R H, Lee C G (2010). A stochastic programming winner determination model for truckload procurement under shipment uncertainty. Transportation Research Part E: Logistics and Transportation Review, 46(1): 49–60
CrossRef Google scholar
[12]
Qian X, Fang S C, Huang M, An Q, Wang X (2017). Reverse auctions with regret-anticipated bidders. Annals of Operations Research
CrossRef Google scholar
[13]
Qian X, Fang S C, Huang M, Nie T, Wang X (2016). Bidding decisions with nonequilibrium strategic thinking in reverse auctions. Working Paper, 1–28
[14]
Rassenti S J, Smith V L, Bulfin R L (1982). A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics, 13(2): 402–417
CrossRef Google scholar
[15]
Rekik M, Mellouli S (2012). Reputation-based winner determination problem for combinatorial transportation procurement auctions. Journal of the Operational Research Society, 63(10): 1400–1409
CrossRef Google scholar
[16]
Remli N, Rekik M (2013). A robust winner determination problem for combinatorial transportation auctions under uncertain shipment volumes. Transportation Research Part C: Emerging Technologies, 35: 204–217
CrossRef Google scholar
[17]
Sandholm T (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1): 1–54
CrossRef Google scholar
[18]
Singh R K, Benyoucef L (2011). A fuzzy TOPSIS based approach for e-sourcing. Engineering Applications of Artificial Intelligence, 24(3): 437–448
CrossRef Google scholar
[19]
Srinivasan S, Stallert J, Whinston A B (1998). Portfolio trading and electronic networks. Working Paper, 1–26
[20]
Tang C S, Zhang K, Zhou S X (2015). Incentive contracts for managing a project with uncertain completion time. Production and Operations Management, 24(12): 1945–1954
CrossRef Google scholar
[21]
Tunca T I, Wu D J, Zhong F (2014). An empirical analysis of price, quality, and incumbency in procurement auctions. Manufacturing & Service Operations Management: M & SOM, 16(3): 346–364
CrossRef Google scholar
[22]
Tversky A, Kahneman D (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4): 297–323
CrossRef Google scholar
[23]
Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015). An intelligent economic approach for dynamic resource allocation in cloud services. IEEE Transactions on Cloud Computing, 3(3): 275–289
CrossRef Google scholar
[24]
Wang X, Sun J, Li H, Wu C, Huang M (2013). A reverse auction based allocation mechanism in the cloud computing environment. Applied Mathematics & Information Sciences, 7(1): 75–84
CrossRef Google scholar
[25]
Zhang B, Yao T, Friesz T L, Sun Y (2015). A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions. Transportation Research Part B: Methodological, 78: 16–31
CrossRef Google scholar
[26]
Zhou S X, Tao Z, Zhang N, Cai G G (2016). Procurement with reverse auction and flexible noncompetitive contracts. Decision Sciences, 47(3): 554–581
CrossRef Google scholar

Acknowledgements

This work has been sponsored by the Distinguished Young Scholars Award of NSFC Grant #71325002; the Major International Joint Research Project of NSFC Grant #71620107003; the Foundation for Innovative Research Groups of NSFC Grant #61621004; 111 Project Grant #B16009; and the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries Grant #2013ZCX11.

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(212 KB)

Accesses

Citations

Detail

Sections
Recommended

/