Winner determination problem with loss-averse buyers in reverse auctions

Xiaohu QIAN , Min HUANG , Yangyang YU , Xingwei WANG

Front. Eng ›› 2017, Vol. 4 ›› Issue (2) : 212 -220.

PDF (212KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (2) : 212 -220. DOI: 10.15302/J-FEM-2017019
RESEARCH ARTICLE
RESEARCH ARTICLE

Winner determination problem with loss-averse buyers in reverse auctions

Author information +
History +
PDF (212KB)

Abstract

Reverse auctions have been widely adopted for purchasing goods and services. This paper considers a novel winner determination problem in a multiple-object reverse auction in which the buyer involves loss-averse behavior due to uncertain attributes. A corresponding winner determination model based on cumulative prospect theory is proposed. Due to the NP-hard characteristic, a loaded route strategy is proposed to ensure the feasibility of the model. Then, an improved ant colony algorithm that consists of a dynamic transition strategy and a Max-Min pheromone strategy is designed. Numerical experiments are conducted to illustrate the effectiveness of the proposed model and algorithm. We find that under the loaded route strategy, the improved ant colony algorithm performs better than the basic ant colony algorithm. In addition, the proposed model can effectively characterize the buyer’s loss-averse behavior.

Keywords

reverse auction / loss aversion / winner determination / improved ant colony algorithm

Cite this article

Download citation ▾
Xiaohu QIAN, Min HUANG, Yangyang YU, Xingwei WANG. Winner determination problem with loss-averse buyers in reverse auctions. Front. Eng, 2017, 4(2): 212-220 DOI:10.15302/J-FEM-2017019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banerji AGupta N (2014). Detection, identification, and estimation of loss aversion: Evidence from an auction experiment. American Economic Journal: Microeconomics6(1): 91–133

[2]

Cachon G PZhang F (2006). Procuring fast delivery: Sole sourcing with information asymmetry. Management Science52(6): 881–896

[3]

De Boer LLabro EMorlacchi P (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management7(2): 75–89

[4]

De Vries SVohra R V (2003). Combinatorial auctions: A survey. INFORMS Journal on Computing15(3): 284–309

[5]

Escudero L FLandete MMarín A (2009). A branch-and-cut algorithm for the winner determination problem. Decision Support Systems46(3): 649–659

[6]

Hishamuddin HSarker R AEssam D (2013). A recovery model for a two-echelon serial supply chain with consideration of transportation disruption. Computers & Industrial Engineering64(2): 552–561

[7]

Ho WXu XDey P K (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research202(1): 16–24

[8]

Huang MQian XFang S CWang X (2016). Winner determination for risk aversion buyers in multi-attribute reverse auction. Omega59: 184–200

[9]

Jackson C (1976). Technology for spectrum markets. Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA

[10]

Kahneman DTversky A (1979). Prospect theory: An analysis of decision under risk. Econometrica47(2): 263–291

[11]

Ma ZKwon R HLee C G (2010). A stochastic programming winner determination model for truckload procurement under shipment uncertainty. Transportation Research Part E: Logistics and Transportation Review46(1): 49–60

[12]

Qian XFang S CHuang MAn QWang X (2017). Reverse auctions with regret-anticipated bidders. Annals of Operations Research

[13]

Qian XFang S CHuang MNie TWang X (2016). Bidding decisions with nonequilibrium strategic thinking in reverse auctions. Working Paper, 1–28

[14]

Rassenti S JSmith V LBulfin R L (1982). A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics13(2): 402–417

[15]

Rekik MMellouli S (2012). Reputation-based winner determination problem for combinatorial transportation procurement auctions. Journal of the Operational Research Society63(10): 1400–1409

[16]

Remli NRekik M (2013). A robust winner determination problem for combinatorial transportation auctions under uncertain shipment volumes. Transportation Research Part C: Emerging Technologies35: 204–217

[17]

Sandholm T (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence135(1): 1–54

[18]

Singh R KBenyoucef L (2011). A fuzzy TOPSIS based approach for e-sourcing. Engineering Applications of Artificial Intelligence24(3): 437–448

[19]

Srinivasan SStallert JWhinston A B (1998). Portfolio trading and electronic networks. Working Paper, 1–26

[20]

Tang C SZhang KZhou S X (2015). Incentive contracts for managing a project with uncertain completion time. Production and Operations Management24(12): 1945–1954

[21]

Tunca T IWu D JZhong F (2014). An empirical analysis of price, quality, and incumbency in procurement auctions. Manufacturing & Service Operations Management: M & SOM16(3): 346–364

[22]

Tversky AKahneman D (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty5(4): 297–323

[23]

Wang XWang XChe HLi KHuang MGao C (2015). An intelligent economic approach for dynamic resource allocation in cloud services. IEEE Transactions on Cloud Computing3(3): 275–289

[24]

Wang XSun JLi HWu CHuang M (2013). A reverse auction based allocation mechanism in the cloud computing environment. Applied Mathematics & Information Sciences7(1): 75–84

[25]

Zhang BYao TFriesz T LSun Y (2015). A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions. Transportation Research Part B: Methodological78: 16–31

[26]

Zhou S XTao ZZhang NCai G G (2016). Procurement with reverse auction and flexible noncompetitive contracts. Decision Sciences47(3): 554–581

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (212KB)

6447

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/