Web-based construction equipment fleet management system: cost-effective global and local allocation

Hakob AVETISYAN, Miroslaw SKIBNIEWSKI

PDF(245 KB)
PDF(245 KB)
Front. Eng ›› 2017, Vol. 4 ›› Issue (1) : 76-83. DOI: 10.15302/J-FEM-2017012
RESEARCH ARTICLE
RESEARCH ARTICLE

Web-based construction equipment fleet management system: cost-effective global and local allocation

Author information +
History +

Abstract

Over the last two decades, construction contractors have been gradually making more investments in construction equipment to meet their needs associated with increasing volumes of construction projects. At present, from an operational perspective, almost all contractors pay more attention to maintaining their equipment fleets in well-sustained workable conditions and having a high accessibility of the necessary equipment pieces. However, such an approach alone is not enough to maintain an efficient and sustainable business. In particular, for large-scale construction companies that operate in multiple sites in the U.S. or overseas, the problem extends to an optimal allocation of available equipment. Given the current state of the construction industry in the U.S., this problem can be solved by geographically locating equipment pieces and then wisely re-allocating them among projects. Identifying equipment pieces geographically is a relatively easy task. The difficulty arises when informed decision-making is required for equipment allocation among job sites. The actual allocation of equipment should be both economically feasible and technologically preferable. To help in informed decision-making, an optimization model is developed as a mixed integer program. This model is formed based on a previously successfully developed decision-support model for construction equipment selection. The proposed model incorporates logical strategies of supply chain management to optimally select construction equipment for any construction site while taking into account the costs, availability, and transportation-related issues as constraints. The model benefits those responsible for informed decision-making for construction equipment selection and allocation. It also benefits the owners of construction companies, owing to its cost-minimization objective.

Keywords

Construction equipment / Equipment assignment optimization / Web-based asset management

Cite this article

Download citation ▾
Hakob AVETISYAN, Miroslaw SKIBNIEWSKI. Web-based construction equipment fleet management system: cost-effective global and local allocation. Front. Eng, 2017, 4(1): 76‒83 https://doi.org/10.15302/J-FEM-2017012

References

[1]
Amano K, Ebihara M (2005). Eco-intensity analysis as sustainability indicators related to energy and material flow. Management Environmental Quality, 16(2): 160–166
CrossRef Google scholar
[2]
Asset Works (2009). FleetFocus. AssetWorks, Wayne, Pennsylvania 19087.http://www.assetworks.com/product/fleetfocus
[3]
Association of Equipment Manufacturers (AEM) (2004). 2004–2005 outlook for construction equipment business. Milwaukee, WI,  USA
[4]
Avetisyan H, Miller-Hooks E, Melanta S (2012). Decision models to support greenhouse gas emissions reduction from transportation construction projects. Journal of Construction Engineering and Management, 138(5): 631–641
CrossRef Google scholar
[5]
Crum J (2013). 2013 construction industry forecast. Wells Fargo Equipment Finance, Inc. Construction Division.https://www08.wellsfargomedia.com/downloads/pdf/com/finance/2013-construction-industry-forecast.pdf
[6]
Energy Information Administration (EIA) (2009). “Carbon dioxide emissions”. Emissions of Greenhouse Gases Report.http://www.eia.doe.gov/oiaf/1605/ggrpt/carbon.html
[7]
Environmental Protection Agency (EPA) (2009). “Greenhouse gas emissions”. Climate Change. http://www.epa.gov/climatechange/emissions/index.html
[8]
Fan H, Kim H, AbouRizk S, Han S H (2008). Decision support in construction equipment management using a nonparametric outlier mining algorithm. Expert Systems with Applications, (34): 1974–1982
[9]
Heavy-Duty Engine Emissions in the Northeast (1997). Report MS-12. Northeast States for Coordinated Air Use, Boston, Massachusetts
[14]
Hill S L (2009). Construction Equipment Ownership and operating Expense Schedule. UASCE Report No: EP 1110-1-8. U. S. Army Corps of Engineers, Washington, DC
[10]
Hon K B (2014). After a year of moving sideways, nonresidential building activity poised to resume recovery in 2014.http://www.aia.org/practicing/AIAB101318
[11]
Stewart L (2000). Giants replace machines to control costs. Construction Equipment, 102(3): 62
[12]
Telogis (2009). OnTrack- GPS fleet management. Telogis, Aliso Viejo, CA 92656 U.S.A.http://www.telogis.com/ontrack/?utm_source=Capterra&utm_medium=cpc&utm_campaign=Capterra
[13]
Truitt P (2009). Potential for reducing greenhouse gas emissions in construction sector. http://www.epa.gov/sectors/pdf/construction-sectorreportpdf
[15]
World Bank (2010). World Development Reprot: Development and Climate Change. World Bank. Washington, DC

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(245 KB)

Accesses

Citations

Detail

Sections
Recommended

/