Operationalizing food-energy-water nexus toward carbon neutrality

Daohan HUANG , Yulong LI , Han SU , Guijun LI , Jie ZHUANG

Front. Eng ›› 2025, Vol. 12 ›› Issue (1) : 208 -218.

PDF (2111KB)
Front. Eng ›› 2025, Vol. 12 ›› Issue (1) : 208 -218. DOI: 10.1007/s42524-025-5006-1
Comments
COMMENTS

Operationalizing food-energy-water nexus toward carbon neutrality

Author information +
History +
PDF (2111KB)

Graphical abstract

Cite this article

Download citation ▾
Daohan HUANG, Yulong LI, Han SU, Guijun LI, Jie ZHUANG. Operationalizing food-energy-water nexus toward carbon neutrality. Front. Eng, 2025, 12(1): 208-218 DOI:10.1007/s42524-025-5006-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali M S, Acquaye A, (2024). An examination of water-energy-food nexus: From theory to application. Renewable & Sustainable Energy Reviews, 202: 114669

[2]

AlloucheJMiddletonCGyawaliD (2014). Nexus Nirvana or Nexus Nullity? A Dynamic Approach to Security and Sustainability in the Water−Energy−Food Nexus. STEPS Centre, Brighton, UK. Availabe at the website of steps-centre.org

[3]

Balasubramanya S, Garrick D, Brozović N, Ringler C, Zaveri E, Rodella A, Buisson M, Schmitter P, Durga N, Kishore A, Minh T T, Kafle K, Stifel D, Balasubramanya S, Chandra A, Hope L, (2024). Risks from solar-powered groundwater irrigation. Science, 383( 6680): 256–258

[4]

BeddingtonJ (2009). Food, Energy, Water and the Climate: A Perfect Storm of Global Events? Available at the website of bis.gov.uk

[5]

Bois A S, Boix M, Montastruc L, (2024). Multi-actor integrated modeling approaches in the context of Water-Energy-Food Nexus systems. Computers & Chemical Engineering, 182: 108559

[6]

Estoque R C, (2023). Complexity and diversity of nexuses: A review of the nexus approach in the sustainability context. Science of the Total Environment, 854: 158612

[7]

Fankhauser S, Smith S M, Allen M, Axelsson K, Hale T, Hepburn C, Kendall M, Khosla R, Lezaun J, Mitchell-Larson E, Obersteiner M, Rajamani L, Rickaby R, Seddon N, Wetzer T, (2022). The meaning of net zero and how to get it right. Nature Climate Change, 12( 1): 15–21

[8]

Frank S, Lessa Derci Augustynczik A, Havlík P, Boere E, Ermolieva T, Fricko O, Di Fulvio F, Gusti M, Krisztin T, Lauri P, Palazzo A, Wögerer M, (2024). Enhanced agricultural carbon sinks provide benefits for farmers and the climate. Nature Food, 5( 9): 742–753

[9]

Ghose B, (2014). Food security and food self-sufficiency in China: From past to 2050. Food and Energy Security, 3( 2): 86–95

[10]

Guillaume J H A, Kummu M, Eisner S, Varis O, (2015). Transferable principles for managing the nexus: lessons from historical global water modelling of central Asia. Water, 7( 8): 4200–4231

[11]

Guo J, Gu F, Liu Y, Liang X, Mo J, Fan Y, (2020). Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions. Nature Communications, 11( 1): 1–15

[12]

Hao Z, Chen Y, Feng S, Liao Z, An N, Li P, (2023). The 2022 Sichuan-Chongqing spatio-temporally compound extremes: A bitter taste of novel hazards. Science Bulletin, 68( 13): 1337–1339

[13]

He L, Xu Z, Wang S, Bao J, Fan Y, Daccache A, (2022). Optimal crop planting pattern can be harmful to reach carbon neutrality Evidence from food-energy-water-carbon nexus perspective. Applied Energy, 308: 118364

[14]

HoffH (2011). Understanding the nexus. In: Bonn2011 conference on the water energy food security nexus. Stockholm Environment Institute. Available at the website of sei.org

[15]

Huntington H P, Schmidt J I, Loring P A, Whitney E, Aggarwal S, Byrd A G, Dev S, Dotson A D, Huang D, Johnson B, Karenzi J, Penn H J F, Salmon A, Sambor D J, Schnabel W E, Wies R W Jr, Wilber M, (2021). Applying the food-energy-water nexus concept at the local scale. Nature Sustainability, 4( 8): 672–679

[16]

Jiang H D, Purohit P, Liang Q M, Dong K, Liu L J, (2022). The cost-benefit comparisons of China’s and India’s NDCs based on carbon marginal abatement cost curves. Energy Economics, 109: 105946

[17]

Leah Jones-Crank J, Lu J, Orlove B, (2024). Bridging the gap between the water-energy-food nexus and compound risks. Environmental Research Letters, 19( 2): 024004

[18]

Leck H, Conway D, Bradshaw M, Rees J, (2015). Tracing the Water–Energy–Food Nexus: Description, Theory and Practice. Geography Compass, 9( 8): 445–460

[19]

Li G, Huang D, Sun C, Li Y, (2019). Developing interpretive structural modeling based on factor analysis for the water-energy-food nexus conundrum. Science of the Total Environment, 651: 309–322

[20]

Li G, Li Y, Jia X, Du L, Huang D, (2016). Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing. Management Review, 28( 10): 11–26

[21]

Li W, Zhao Y, Jiang S, Wang H, Qi T, Ling M, Zhu Y, Li H, He F, He G, (2024). Research progress and development enlightenment of the water, energy, and food nexus. Acta Ecologica Sinica, 44( 17): 1–15

[22]

Liu J, Hull V, Godfray H C J, Tilman D, Gleick P, Hoff H, Pahl-Wostl C, Xu Z, Chung M G, Sun J, Li S, (2018). Nexus approaches to global sustainable development. Nature Sustainability, 1( 9): 466–476

[23]

Mannan M, Al-Ansari T, Mackey H R, Al-Ghamdi S G, (2018). Quantifying the energy, water and food nexus: a review of the latest developments based on life-cycle assessment. Journal of Cleaner Production, 193: 300–314

[24]

Næss J S, Cavalett O, Cherubini F, (2021). The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nature Sustainability, 4( 6): 525–536

[25]

Namany S, Al-Ansari T, Govindan R, (2019). Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. Journal of Cleaner Production, 225: 610–626

[26]

Project Group of Global Engineering Fronts (PGGEF) of Chinese Academy of Engineering (2018). Engineering Fronts 2018. Beijing: Higher Education Press

[27]

Qian X, Yu J, Dai R, (1993). A new discipline of science the study of open complex giant system and its methodology. Journal of Systems Engineering and Electronics, 4( 2): 2–12

[28]

Rising J, Tedesco M, Piontek F, Stainforth D A, (2022). The missing risks of climate change. Nature, 610( 7933): 643–651

[29]

Roidt M, Avellán T, (2019). Learning from integrated management approaches to implement the nexus. Journal of Environmental Management, 237: 609–616

[30]

Scanlon B R, Ruddell B L, Reed P M, Hook R I, Zheng C, Tidwell V C, Siebert S, (2017). The food-energy-water nexus: Transforming science for society. Water Resources Research, 53( 5): 3550–3556

[31]

Siegenfeld A F, Bar-Yam Y, (2020). An introduction to complex Systems Science and its Applications. Complexity, 2020: 1–16

[32]

Sun K, Han J, Wu Q, Xie W, He W, Yang Z, Wang Y, Liu J, Shi E, (2024). The coupling coordination and spatiotemporal evolution of industrial water-energy-CO2 in the Yellow River Basin. Science of the Total Environment, 912: 169012

[33]

Tao S, Fang J, Zhao X, Zhao S, Shen H, Hu H, Tang Z, Wang Z, Guo Q, (2015). Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences of the United States of America, 112( 7): 2281–2286

[34]

The Intergovernmental Panel on Climate Change (IPCC) (2018). Special Report: Global warming of 1.5°C. Cambridge University Press, doi:10.1017/9781009157940

[35]

Van Vuuren D P, Bijl D L, Bogaart P, Stehfest E, Biemans H, Dekker S C, Doelman J C, Gernaat D E H J, Harmsen M, (2019). Integrated scenarios to support analysis of the food–energy–water nexus. Nature Sustainability, 2( 12): 1132–1141

[36]

von Bertalanffy L, (1950). An outline of general system theory. British Journal for the Philosophy of Science, 1( 2): 134–165

[37]

Wang D Y, Li Y, Hong J, (2025). Tax or subsidy? The impact assessment of environmental policies on carbon allocation and emissions abatement of prefabricated construction supply chain. Journal of Environmental Management, 373: 123451

[38]

Wei Y M, Chen K, Kang J N, Chen W, Wang X Y, Zhang X, (2022). Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering, 14: 52–63

[39]

Weitz N, Strambo C, Kemp-Benedict E, Nilsson M, (2017). Closing the governance gaps in the water-energy-food nexus: Insights from integrative governance. Global Environmental Change, 45: 165–173

[40]

Xu Z, Chen X, Liu J, Zhang Y, Chau S, Bhattarai N, Wang Y, Li Y, Connor T, Li Y, (2020). Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nature Communications, 11( 1): 1–12

[41]

Zhang C, Chen X, Li Y, Ding W, Fu G, (2018). Water-energy-food nexus: Concepts, questions and methodologies. Journal of Cleaner Production, 195: 625–639

[42]

Zhang S, Chen W, Zhang Q, Krey V, Byers E, Rafaj P, Nguyen B, Awais M, Riahi K, (2024). Targeting net-zero emissions while advancing other sustainable development goals in China. Nature Sustainability, 7( 9): 1107–1119

[43]

Zhang Z, Liu J, Wang K, Tian Z, Zhao D, (2020). A review and discussion on the water-food-energy nexus: Bibliometric analysis. Chinese Science Bulletin, 65( 16): 1569–1580

[44]

Zhuang J, Gill T, Löffler F, Jin M, Sayler G, (2023). Can food-energy-water nexus research keep pace with agricultural innovation. Engineering, 23: 24–28

[45]

Zhuang J, Löffler F, Sayler G, (2021a). Closing transdisciplinary collaboration gaps of food-energy-water nexus research. Environmental Science & Policy, 126: 164–167

[46]

Zickfeld K, Maclsaac A J, Canadell J G, Fuss S, Jackson R B, Jones C D, Lohila A, Matthews H D, Peters G P, Rogelj J, Zaehle S, (2023). Net-zero approaches must consider Earth system impacts to achieve climate goals. Nature Climate Change, 13( 12): 1298–1305

[47]

Zuo Q, Li Q, Yang L, Jing R, Ma J, Yu L, (2023). Incorporating carbon sequestration toward a water-energy-food-carbon planning with uncertainties. iScience, 26( 9): 107669

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2111KB)

719

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/