Condition-based maintenance via Markov decision processes: A review
Xiujie ZHAO , Piao CHEN , Loon Ching TANG
Front. Eng ›› 2025, Vol. 12 ›› Issue (2) : 330 -342.
Condition-based maintenance via Markov decision processes: A review
The optimization of condition-based maintenance (CBM) poses challenges due to the rapid advancement of monitoring technologies. Traditional CBM research has mainly relied on theory-driven approaches, which lead to the development of several effective maintenance models characterized by their wide applicability and attractiveness. However, when the system reliability model becomes complex, such methods may run into intractable cost models. The Markov decision process (MDP), a classic framework for sequential decision making, has drawn increasing attention for optimization of CBM optimization due to its appealing tractability and pragmatic applicability across different problems. This paper presents a review of research that optimizes CBM policies using MDP, with a focus on mathematical modeling and optimization methods to enable action. We have organized the review around several key components that are subject to similar mathematical modeling constraints, including system complexity, the availability of system conditions, and diverse criteria of decision-makers. An increase in interest has led to the optimization of CBM for systems possessing increasing numbers of components and sensors. Then, the review focuses on joint optimization problems with CBM. Finally, as an important extension to traditional MDPs, reinforcement learning (RL) based methods are also reviewed as ways to optimize CBM policies. This paper provides significant background research for researchers and practitioners working in reliability and maintenance management, and gives discussions on possible future research directions.
reliability / degradation modeling / dynamic programming / reinforcement learning / sequential decision problems.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
Higher Education Press
/
| 〈 |
|
〉 |