Spatiotemporal dynamics of city-level WEEE generation from different sources in China
Wanjun WANG , Yupeng LIU , Kuishuang FENG , Wei-Qiang CHEN
Front. Eng ›› 2024, Vol. 11 ›› Issue (2) : 181 -193.
Spatiotemporal dynamics of city-level WEEE generation from different sources in China
China stands as one of the leading producers of waste electrical and electronic equipment (WEEE), facing significant challenges in managing the substantial volumes generated. Despite existing regulations, the informal treatment of WEEE persists in some areas due to inadequate recycling networks at the city level. Consequently, there is a critical need for a detailed geographical mapping of WEEE generation to address improper disposal practices effectively. This study introduces the cMAC – EEEs (city Material Cycles and Manufactured Capital – EEEs) database, providing estimates of WEEE generation across approximately 300 prefecture-level cities from 1978 to 2017. It focuses on five commonly used types of electrical and electronic equipment (refrigerators, air conditioners, washing machines, computers, TVs) originating from three key sources (urban residents, rural residents, enterprises). The findings reveal (1) significant spatial variation in WEEE generation within China, with eastern and central city clusters identified as hotspots, particularly for urban residents and enterprises, while the western region exhibits the highest growth rate in WEEE generation, notably among rural residents. (2) The growth in obsolete computers and air conditioners is prominent, especially in rural areas and among enterprises, whereas the generation of obsolete TVs, washing machines, and refrigerators is leveling off and expected to decrease in some urban areas. (3) Enterprises account for a substantial portion of WEEE generation, though uncertainties exist, necessitating further refinement. The study highlights that less developed regions lack adequate recycling facilities, with specific limitations in refrigerators and air conditioners recycling capabilities. To enhance WEEE management, it advocates for increased interregional collaboration and capacity building in less developed areas. Additionally, the regulation of WEEE from private enterprises requires improvement. At the product level, a greater focus on recycling practices for refrigerators and air conditioners is recommended.
WEEE / obsolete electrical and electronic equipment / urban mining / waste management / industrial ecology
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
MIIT (2010). Catalog of WEEE Recycling (1st ed.) |
| [26] |
MIIT (2014). Catalog of WEEE Recycling (2nd ed.) |
| [27] |
|
| [28] |
|
| [29] |
National bureau of statistics of China (NBSC) (2002/04/19). Classifications and Methods |
| [30] |
National bureau of statistics of China (NBSC) (2017). Codes for the administrative regions of P. R. China |
| [31] |
National bureau of statistics of China (NBSC) (2020). China City Statistical Yearbook 2019. Beijing, China: China Statistics Press |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |