Brief review: frontiers in the computational studies of gene regulations

Expand
  • MOE Key Laboratory of Bioinformatics and Bioinformatics Div, TNLIST / Department of Automation, Tsinghua University

Published date: 05 Sep 2008

Abstract

Computational methods have greatly expanded our understanding of complex gene regulations in a systematic view. The rapid progress in molecular biology and high-throughput bio-techniques is providing new opportunities and challenges for the computational analysis of gene regulations.

Cite this article

GU Jin . Brief review: frontiers in the computational studies of gene regulations[J]. Frontiers of Electrical and Electronic Engineering, 0 : 251 -259 . DOI: 10.1007/s11460-008-0066-7

References

1. Lewin B GeneVIIINew JerseyPrentice Hall 2004 2. Cliften P Sudarsanam P Desikan A et al.Finding functional features in Saccharomyces genomesby phylogenetic footprintingScience 2003 301(5629)7176. doi:10.1126/science.1084337 3. Harbison C T Gordon D B Lee T I et al.Transcriptional regulatory code of a eukaryoticgenomeNature 2004 431(7004)99104. doi:10.1038/nature02800 4. Lee I Date S V Adai A T et al.A probabilistic functional network of yeast genesScience 2004 306(5701)15551558. doi:10.1126/science.1099511 5. Black D L Mechanismsof alternative pre-messenger RNA splicingAnnual Review of Biochemistry 2003 72291336. doi:10.1146/annurev.biochem.72.121801.161720 6. Blencowe B J Alternativesplicing: new insights from global analysesCell 2006 126(1)3747. doi:10.1016/j.cell.2006.06.023 7. Lopez A J Alternativesplicing of pre-mRNA: developmental consequences and mechanisms ofregulationAnnual Review Genetics 1998 32279305. doi:10.1146/annurev.genet.32.1.279 8. Ambros V Thefunctions of animal microRNAsNature 2004 431(7006)350355. doi:10.1038/nature02871 9. Bartel D P MicroRNAs:genomics, biogenesis, mechanism, and functionCell 2004 116(2)281297. doi:10.1016/S0092‐8674(04)00045‐5 10. Baulcombe D RNAsilencing in plantsNature 2004 431(7006)356363. doi:10.1038/nature02874 11. Kim V N Nam J W Genomics of microRNATrends in Genetics 2006 22(3)165173. doi:10.1016/j.tig.2006.01.003 12. Pennisi E Humangenome. Reaching their goal early, sequencing labs celebrateScience 2003 300(5618)409. doi: 10.1126/science.300.5618.409 13. Brenner S Johnson M Bridgham J et al.Gene expression analysis by massively parallel signaturesequencing (MPSS) on microbead arraysNatureBiotechnology 2000 18(6)630634. doi:10.1038/76469 14. Brenner S Williams S R Vermaas E H et al.In vitro cloning of complex mixtures of DNA on microbeads:physical separation of differentially expressed cDNAsProceedings of the National Academy of Sciences of the United Statesof America 2000 97(4)16651670. doi:10.1073/pnas.97.4.1665 15. Margulies M Egholm M Altman W E et al.Genome sequencing in microfabricated high-densitypicolitre reactorsNature 2005 437(7057)376380 16. Ng P Tan J J Ooi H S et al.Multiplex sequencing of paired-end ditags (MS-PET):a strategy for the ultra-high-throughput analysis of transcriptomesand genomesNucleic Acids Research 2006 34(12)e84. doi: 10.1093/nar/gkl444 17. Biemar F Nix D A Piel J et al.Comprehensive identification of Drosophila dorsal-ventralpatterning genes using a whole-genome tiling arrayProceedings of the National Academy of Sciences of the United Statesof America 2006 103(34)1276312768. doi:10.1073/pnas.0604484103 18. Biemar F Zinzen R Ronshaugen M et al.Spatial regulation of microRNA gene expression inthe Drosophila embryoProceedings of theNational Academy of Sciences of the United States of America 2005 102(44)1590715911. doi:10.1073/pnas.0507817102 19. Cheng J Kapranov P Drenkow J et al.Transcriptional maps of 10 human chromosomes at5-nucleotide resolutionScience 2005 308(5725)11491154. doi:10.1126/science.1108625 20. Manak J R Dike S Sementchenko V et al.Biological function of unannotated transcriptionduring the early development of Drosophila melanogasterNature Genetics 2006 38(10)11511158. doi:10.1038/ng1875 21. Gerber A P Luschnig S Krasnow M A et al.Genome-wide identification of mRNAs associated withthe translational regulator PUMILIO in Drosophila melanogasterProceedings of the National Academy of Sciences ofthe United States of America 2006 103(12)44874492. doi:10.1073/pnas.0509260103 22. Iyer V R Horak C E Scafe C S et al.Genomic binding sites of the yeast cell-cycle transcriptionfactors SBF and MBFNature 2001 409(6819)533538. doi:10.1038/35054095 23. Lieb J D Liu X Botstein D et al.Promoter-specific binding of rap1 revealed by genome-widemaps of protein-DNA associationNature Genetics 2001 28(4)327334. doi:10.1038/ng569 24. Ren B Robert F Wyrick J J et al.Genome-wide location and function of DNA bindingproteinsScience 2000 290(5500)23062309. doi:10.1126/science.290.5500.2306 25. Schwikowski B Uetz P Fields S A network of protein-protein interactions in yeastNature Biotechnology 2000 18(12)12571261. doi:10.1038/82360 26. Holland H J Adaptationin Natural and Artificial SystemsCambridgeThe MIT Press 1992 27. Rollins R A Haghighi F Edwards J R et al.Large-scale structure of genomic methylation patternsGenome Research 2006 16(2)157163. doi:10.1101/gr.4362006 28. Amoreira C Hindermann W Grunau C An improved version of the DNA methylation database (MethDB)Nucleic Acids Research 2003 31(1)7577. doi:10.1093/nar/gkg093 29. Grunau C Renault E Roizes G DNA methylation database “MethDB”: a user guideJournal of Nutrition 2002 132(8 Suppl)2435S2439S 30. Grunau C Renault E Rosenthal A et al.MethDB–a public database for DNA methylationdataNucleic Acids Research 2001 29(1)270274. doi:10.1093/nar/29.1.270 31. Bhasin M Zhang H Reinherz E L et al.Prediction of methylated CpGs in DNA sequences usinga support vector machineFEBS Letters 2005 579(20)43024308. doi:10.1016/j.febslet.2005.07.002 32. Fang F Fan S Zhang X et al.Predicting methylation status of CpG islands inthe human brainBioinformatics 2006 22(18)22042209. doi:10.1093/bioinformatics/btl377 33. Das R Dimitrova N Xuan Z et al.Computational prediction of methylation status inhuman genomic sequencesProceedings of theNational Academy of Sciences of the United States of America 2006 103(28)1071310716. doi:10.1073/pnas.0602949103 34. Bock C Paulsen M Tierling S et al.CpG island methylation in human lymphocytes is highlycorrelated with DNA sequence, repeats, and predicted DNA structurePLoS Genetics 2006 2(3)e26. doi: 10.1371/journal.pgen.0020026 35. Hung J H Wang W C Huang H D Systematic identification and repository of RNA editingsite in human genomeInternational ComputerSymposium 2006 13861391 36. He T Du P Li Y dbRES: a web-oriented database for annotated RNA editingsitesNucleic Acids Research 2007 35(Database issue)D141144. doi:10.1093/nar/gkl815 37. Picardi E Regina T M Brennicke A et al.REDIdb: the RNA editing databaseNucleic Acids Research 2007 35(Database issue)D173177. doi:10.1093/nar/gkl793 38. Cummings M P Myers D S Simple statistical models predictC-to-U edited sites in plant mitochondrial RNABMC Bioinformatics 2004 5132. doi: 10.1186/1471‐2105‐5‐132 39. Mower J P PREP-Mt:predictive RNA editor for plant mitochondrial genesBMC Bioinformatics 2005 696. doi: 10.1186/1471‐2105‐6‐96 40. Thompson J Gopal S Correction: genetic algorithmlearning as a robust approach to RNA editing site site predictionBMC Bioinformatics 2006 7406. doi: 10.1186/1471‐2105‐7‐406 41. Thompson J Gopal S Genetic algorithm learningas a robust approach to RNA editing site predictionBMC Bioinformatics 2006 7145. doi: 10.1186/1471‐2105‐7‐145 42. Du P He T Li Y Prediction of C-to-U RNA editing sites in higher plantmitochondria using only nucleotide sequence featuresBiochemical and Biophysical Research Communications 2007 358(1)336341. doi:10.1016/j.bbrc.2007.04.130 43. Athanasiadis A Rich A Maas S Widespread A-to-I RNA editing of Alu-containing mRNAs inthe human transcriptomePLoS Biology 2004 2(12)e391. doi: 10.1371/journal.pbio.0020391 44. Stamm S Riethoven J J Le Texier V et al.ASD: a bioinformatics resource on alternative splicingNucleic Acids Research 2006 34(Database issue)D4655. doi:10.1093/nar/gkj031 45. Thanaraj T A Stamm S Clark F et al.ASD: the Alternative Splicing DatabaseNucleic Acids Research 2004 32(Database issue)D6469. doi:10.1093/nar/gkh030 46. Ohler U Shomron N Burge C B Recognition of unknown conserved alternatively splicedexonsPLoS Computational Biology 2005 1(2)113122. doi:10.1371/journal.pcbi.0010015 47. Wang M Marin A Characterization and predictionof alternative splice sitesGene 2006 366(2)219227. doi:10.1016/j.gene.2005.07.015 48. Xia H Bi J Li Y Identification of alternative 5′/3′ splicesites based on the mechanism of splice site competitionNucleic Acids Research 2006 34(21)63056313. doi:10.1093/nar/gkl900 49. Griffiths-Jones S miRBase:the microRNA sequence databaseMethods inMolecular Biology 2006 342129138 50. Griffiths-Jones S Grocock R J Van Dongen S et al.miRBase: microRNA sequences, targets and gene nomenclatureNucleic Acids Research 2006 34(Database issue)D140144. doi:10.1093/nar/gkj112 51. Sethupathy P Corda B Hatzigeorgiou A G TarBase: A comprehensive database of experimentallysupported animal microRNA targetsRNA 2006 12(2)192197. doi:10.1261/rna.2239606 52. Berezikov E Cuppen E Plasterk R H Approaches to microRNA discoveryNature Genetics 2006 38(Suppl)S27. doi:10.1038/ng1794 53. Rajewsky N MicroRNAtarget predictions in animalsNature Genetics 2006 38(Suppl)S813. doi:10.1038/ng1798 54. Sethupathy P Megraw M Hatzigeorgiou A G A guide through present computational approachesfor the identification of mammalian microRNA targetsNature Methods 2006 3(11)881886. doi:10.1038/nmeth954 55. Bussemaker H J Foat B C Ward L D Predictive modeling of genome-wide mRNA expression: frommodules to moleculesAnnual Review of Biophysicsand Biomolecular Structure 2007 36329347. doi:10.1146/annurev.biophys.36.040306.132725 56. Grundy W N Bailey T L Elkan C P ParaMEME: a parallel implementation and a web interfacefor a DNA and protein motif discovery toolComputer Applications in Bioscience 1996 12(4)303310 57. Grundy W N Bailey T L Elkan C P et al.Meta-MEME: motif-based hidden Markov models of proteinfamiliesComputer Applications in Bioscience 1997 13(4)397406 58. Liu X S Brutlag D L Liu J S An algorithm for finding protein-DNA binding sites withapplications to chromatin-immunoprecipitation microarray experimentsNature Biotechnology 2002 20(8)835839 59. Schones D E Smith A D Zhang M Q Statistical significance of cis-regulatory modulesBMC Bioinformatics 2007 819. doi: 10.1186/1471‐2105‐8‐19 60. Xie X Lu J Kulbokas E J et al.Systematic discovery of regulatory motifs in humanpromoters and 3′UTRs by comparison of several mammalsNature 2005 434(7031)338345. doi:10.1038/nature03441 61. Gu J Fu H The pairwise conservation scores- an algorithm to identify conserved K-mers 62. Roven C Bussemaker H J REDUCE: An online tool forinferring cis-regulatory elements and transcriptional module activitiesfrom microarray dataNucleic Acids Research 2003 31(13)34873490. doi:10.1093/nar/gkg630 63. Das D Banerjee N Zhang M Q Interacting models of cooperative gene regulationProceedings of the National Academy of Sciences ofthe United States of America 2004 101(46)1623416239. doi:10.1073/pnas.0407365101 64. Das D Nahle Z Zhang M Q Adaptively inferring human transcriptional subnetworksMolecular Systems Biology 2006 22006.0029. doi: 10.1038/msb4100067 65. Keles S Van der Laan M J Vulpe C Regulatory motif finding by logic regressionBioinformatics 2004 20(16)27992811. doi:10.1093/bioinformatics/bth333 66. Zhong W Zeng P Ma P et al.RSIR: regularized sliced inverse regression formotif discoveryBioinformatics 2005 21(22)41694175. doi:10.1093/bioinformatics/bti680 67. Jaqaman K Danuser G Linking data to models: dataregressionNature Reviews Molecular CellBiology 2006 7(11)813819. doi:10.1038/nrm2030 68. Visel A Minovitsky S Dubchak I et al.VISTA Enhancer Browser: a database of tissue-specifichuman enhancersNucleic Acids Research 2007 35(Database issue)D8892. doi:10.1093/nar/gkl822 69. Gallo S M Li L Hu Z et al.REDfly: a regulatory element database for drosophilaBioinformatics 2006 22(3)381383. doi:10.1093/bioinformatics/bti794 70. Shalgi R Lieber D Oren M et al.Global and local architecture of the mammalian microRNA-transcriptionfactor regulatory networkPLoS ComputationalBiology 2007 3(7)e131. doi: 10.1371/journal.pcbi.0030131 71. Tsang J Zhu J Van Oudenaarden A MicroRNA-mediated feedback and feedforwardloops are recurrent network motifs in mammalsMolecular Cell 2007 26(5)753767. doi:10.1016/j.molcel.2007.05.018 72. Ruby J G Jan C H Bartel D P Intronic micro-RNA precursors that bypass Drosha processingNature 2007 448(7149)8386. doi:10.1038/nature05983 73. Kim Y K Kim V N Processing of intronic microRNAsEMBO Journal 2007 26(3)775783. doi:10.1038/sj.emboj.7601512 74. Kawahara Y Zinshteyn B Sethupathy P et al.Redirection of silencing targets by adenosine-to-inosineediting of miRNAsScience 2007 315(5815)11371140. doi:10.1126/science.1138050 75. Vermeirssen V Barrasa M I Hidalgo C A et al.Transcription factor modularity in a gene-centeredCelegans core neuronal protein-DNA interaction networkGenome Research 2007 17(7)10611071. doi:10.1101/gr.6148107 76. Deplancke B Mukhopadhyay A Ao W et al.A gene-centered C. elegans protein-DNA interactionnetworkCell 2006 125(6)11931205. doi:10.1016/j.cell.2006.04.038 77. Davidson E H Rast J P Oliveri P et al.A genomic regulatory network for developmentScience 2002 295(5560)16691678. doi:10.1126/science.1069883 78. Chaves M Albert R Sontag E D Robustness and fragility of Boolean models for geneticregulatory networksJournal of TheoreticalBiology 2005 235(3)431449. doi:10.1016/j.jtbi.2005.01.023 79. Kitano H Towardsa theory of biological robustnessMolecularSystems Biology 2007 3137. doi: 10.1038/msb4100179 80. Albert R Barabasi A L Statistical mechanics of complexnetworksReviews of Modern Physics 2002 74(1)4797. doi:10.1103/RevModPhys.74.47 81. Jeong H Tombor B Albert R et al.The large-scale organization of metabolic networksNature 2000 407(6804)651654. doi:10.1038/35036627 82. Jeong H Mason S P Barabasi A L et al.Lethality and centrality in protein networksNature 2001 411(6833)4142. doi:10.1038/35075138 83. Milo R Shen-Orr S Itzkovitz S et al.Network motifs: simple building blocks of complexnetworksScience 2002 298(5594)824827. doi:10.1126/science.298.5594.824 84. Shen-Orr S S Milo R Mangan S et al.Network motifs in the transcriptional regulationnetwork of Escherichia coliNature Genetics 2002 31(1)6468. doi:10.1038/ng881 85. Haykin S NeuralNetworks: A Comprehensive Foundation(2nd edition) New JerseyPrentice Hall 1998 86. Prill R J Iglesias P A Levchenko A Dynamic properties of network motifs contribution to biologicalnetwork organizationPLoS Biology 2005 3(11)e343. doi: 10.1371/journal.pbio.0030343 87. Kitano H BiologicalrobustnessNature Review of Genetics 2004 5(11)826837. doi:10.1038/nrg1471 88. Kitano H Thetheory of biological robustness and its implication in cancerErnst Schering Research Foundation Workshop 2007 616988 89. Kitano H Biologicalrobustness in complex host-pathogen systemsProgress in Drug Research 2007 64(239)241263 90. Kitano H Systemsbiology: a brief overviewScience 2002 295(5560)16621664. doi:10.1126/science.1069492
Outlines

/