RESEARCH ARTICLE

Numerical simulation of corona-induced vibration of high voltage conductor

  • A. GOURBI ,
  • M. BRAHAMI ,
  • A. TILMATINE ,
  • P. PIROTTE
Expand
  • Djillali Liabes University, Sidi Bel Abbés 22000, Algeria

Received date: 12 Jun 2008

Accepted date: 14 Oct 2008

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

When it rains, electric power transmission lines start vibrating due to corona effect. This type of vibration is known as “corona-induced vibration”. The aim of this paper is to elaborate a mathematical model for numerical simulation of the corona-induced vibration, with consideration of the influence of the magnitude and the polarity of the electric field on the conductor surface. Finite element method was employed to develop the numerical model, and the finite difference method was used for the time discretisation. The moment of application of the corona-induced force is evaluated using the resultant vertical force applied to a water drop, suspended under a high voltage conductor. Some experimental results of other authors are exploited to evaluate the precision of the simulation and the validation of numerical results.

Cite this article

A. GOURBI , M. BRAHAMI , A. TILMATINE , P. PIROTTE . Numerical simulation of corona-induced vibration of high voltage conductor[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 335 -341 . DOI: 10.1007/s11460-009-0033-y

1
Burnett D S. Finite Element Analysis. Addison-Wesley Publishing Company, 1988

2
Kawamoto H, Umezu S. Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. Journal of Physics D: Applied Physics, 2005, 38(6): 887-894

DOI

3
Kawamoto H, Umezu S. Force at spark discharge in pin-to-plate system. Journal of Electrostatics, 2007, 65(2): 75-81

DOI

4
Kollar L E, Farzaneh M, Karev A R. Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution. International Journal of Multiphase Flow, 2005, 31(1): 69-92

DOI

5
Kollar L E, Farzaneh M. Vibration of bundled conductors following ice shedding. IEEE Transactions on Power Delivery, 2008, 23(2): 1097-1104

DOI

6
Derakhshanin M. Simulations numériques des vibrations induites par effet de couronne sur un court conducteur soumis à une pluie artificielle. Dissertation for the Master’s Degree. Chicoutimi: Université of Chicoutimi, 2001

7
Demers P. Simulations numériques des vibrations induites par effet de couronne sur les conducteurs à haute tension. Dissertation for the Master’s Degree. Chicoutimi: Université of Chicoutimi, 1994

8
Farzaneh M. Contribution à l’étude des mécanismes de vibrations induites par effet de couronne. Dissertation for the Doctoral Degree. Toulouse: Université of Paul Sabatier, 1986

9
Farzaneh M, Teisseyre Y. Mechanical vibration of HV conductors induced by corona: roles of the space charge and ionic wind. IEEE Transactions on Power Delivery, 1988, 3(3): 1122-1130

DOI

10
Farzaneh M. Effects of the intensity of precipitation and transverse wind on the corona-induced vibration of HV conductors. IEEE Transactions on Power Delivery, 1992, 7(2): 674-680

DOI

11
Hamel M. Influence de la variation de la température ambiante sur les vibrations induites par effet de couronne. Dissertation for the Master’s Degree. Chicoutimi: université of Chicoutimi, 1991

12
Phan L C, Adachi T, Allaire M C. Experimental investigations of corona-induced vibration on high voltage conductors with different types of supports. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(4): 1975-1984

DOI

13
Staub C. Modélisation dynamique de procédés de forgeage. Dissertation for the Doctoral Degree. Lyon: The National Applied Science Institute, 1998

Outlines

/