REVIEW ARTICLE

Pattern recognition methods in microarray based oncology study

  • Xuesong LU 1 ,
  • Xuegong ZHANG , 2
Expand
  • 1. Merck Sharp & Dohme (China) Ltd., Shanghai Office, Shanghai 200040, China
  • 2. Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China

Received date: 23 Jun 2008

Accepted date: 02 Jul 2008

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

With the development of microarray technology, more and more microarray-based oncology studies have been carried out. Huge amounts of data and the complexity of cancer mechanisms make data analysis methods a much more important part of these studies. In this article, we will mainly focus on the pattern recognition methods used in oncology studies. According to the availability of sample information, the unsupervised methods and supervised methods are reviewed separately. Finally, some possible future directions are proposed.

Cite this article

Xuesong LU , Xuegong ZHANG . Pattern recognition methods in microarray based oncology study[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 243 -250 . DOI: 10.1007/s11460-009-0041-y

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 60575014, 30625012 and 60721003), and National High-tech R&D Program (No. 2006AA02Z325).
1
Golub T R, Slonim D K, Tamayo P, Huard C, Gaasenbeek M, Mesirov J P, Coller H, Loh M L, Downing J R, Caligiuri M A, Bloomfield C D, Lander E S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439): 531–537

DOI

2
Alon U, Barkai N, Notterman D A, Gish K, Ybarra S, Mack D, Levine A J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12): 6745–6750

DOI

3
van’t Veer L J, Dai H, van de Vijver M J, He Y D, Hart A A, Mao M, Peterse H L, van der Kooy K, Marton M J, Witteveen A T, Schreiber G J, Kerkhoven R M, Roberts C, Linsley P S, Bernards R, Friend S H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871): 530–536

DOI

4
Alizadeh A A, Eisen M B, Davis R E, Ma C, Lossos I S, Rosenwald A, Boldrick J C, Sabet H, Tran T, Yu X, Powell J I, Yang L, Marti G E, Moore T, Hudson J Jr, Lu L, Lewis D B, Tibshirani R, Sherlock G, Chan W C, Greiner T C, Weisenburger D D, Armitage J O, Warnke R, Levy R, Wilson W, Grever M R, Byrd J C, Botstein D, Brown P O, Staudt L M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769): 503–511

DOI

5
Beer D G, Kardia S L, Huang C C, Giordano T J, Levin A M, Misek D E, Lin L, Chen G, Gharib T G, Thomas D G, Lizyness M L, Kuick R, Hayasaka S, Taylor J M, Iannettoni M D, Orringer M B, Hanash S. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine, 2002, 8(8): 816–824

6
Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406(6795): 536–540

DOI

7
Dyrskjøt L, Thykjaer T, Kruhøffer M, Jensen J L, Marcussen N, Hamilton-Dutoit S, Wolf H, Orntoft T F. Identifying distinct classes of bladder carcinoma using microarrays. Nature Genetics, 2003, 33(1): 90–96

DOI

8
Kapp A V, Jeffrey S S, Langerød A, B-rresen-Dale A L, Han W, Noh D Y, Bukholm I R, Nicolau M, Brown P O, Tibshirani R. Discovery and validation of breast cancer subtypes. BMC Genomics, 2006, 7: 231

DOI

9
Ross D T, Scherf U, Eisen M B, Perou C M, Rees C, Spellman P, Iyer V, Jeffrey S S, van de Rijn M, Waltham M, Pergamenschikov A, Lee J C, Lashkari D, Shalon D, Myers T G, Weinstein J N, Botstein D, Brown P O. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 2000, 24(3): 227–235

DOI

10
Huang Y, Prasad M, Lemon W J, Hampel H, Wright F A, Kornacker K, LiVolsi V, Frankel W, Kloos R T, Eng C, Pellegata N S, de la Chapelle A. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(26): 15044–15049

DOI

11
Hastie T, Tibshirani R, Botstein D, Brown P. Supervised harvesting of expression trees. Genome Biology, 2001, 2(1): research0003.1–research0003.12

12
Huang E, Cheng S H, Dressman H, Pittman J, Tsou M H, Horng C F, Bild A, Iversen E S, Liao M, Chen C M, West M, Nevins J R, Huang A T. Gene expression predictors of breast cancer outcomes. Lancet, 2003, 361(9369): 1590–1596

DOI

13
Nilsson J, Fioretos T, Höglund M, Fontes M. Approximate geodesic distances reveal biologically relevant structures in microarray data. Bioinformatics, 2004, 20(6): 874–880

DOI

14
Boratyn G M, Datta S, Datta S. Incorporation of biological knowledge into distance for clustering genes. Bioinformation, 2007, 1(10): 396–405

15
Bagirov A M, Ferguson B, Ivkovic S, Saunders G, Yearwood J. New algorithms for multi-class cancer diagnosis using tumor gene expression signatures. Bioinformatics, 2003, 19(14): 1800–1807

DOI

16
Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 2005, 21(21): 3970–3975

DOI

17
Sese J, Kurokawa Y, Monden M, Kato K, Morishita S. Constrained clusters of gene expression profiles with pathological features. Bioinformatics, 2004, 20(17): 3137–3145

DOI

18
Dotan-Cohen D, Melkman A A, Kasif S. Hierarchical tree snipping: clustering guided by prior knowledge. Bioinformatics, 2007, 23(24): 3335–3342

DOI

19
Belacel N, Cuperlović-Culf M, Laflamme M, Ouellette R. Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics, 2004, 20(11): 1690–1701

DOI

20
Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 12079–12084

DOI

21
Getz G, Gal H, Kela I, Notterman D A, Domany E. Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data. Bioinformatics, 2003, 19(9): 1079–1089

DOI

22
Kluger Y, Basri R, Chang J T, Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research, 2003, 13(4): 703–716

DOI

23
Wang J, Delabie J, Aasheim H, Smeland E, Myklebost O. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics, 2002, 3: 36

DOI

24
Hanczar B, Courtine M, Benis A, Hennegar C, Clément K, Zucker J D. Improving classification of microarray data using prototype-based feature selection. ACM SIGKDD Explorations Newsletter, 2003, 5(2): 23–30

DOI

25
Crescenzi M, Giuliani A. The main biological determinants of tumor line taxonomy elucidated by a principal component analysis of microarray data. FEBS Letters, 2001, 507(1): 114–118

DOI

26
Hsu A L, Tang S L, Halgamuge S K. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics, 2003, 19(16): 2131–2140

DOI

27
Li W, Fan M, Xiong M. SamCluster: an integrated scheme for automatic discovery of sample classes using gene expression profile. Bioinformatics, 2003, 19(7): 811–817

DOI

28
Dudoit S, Fridlyand J, Speed T. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Technical Report 576. Berkeley, CA: Department of Statistics, University of California, 2000

29
Smolkin M, Ghosh D. Cluster stability scores for microarray data in cancer studies. BMC Bioinformatics, 2003, 4: 36

DOI

30
Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 2003, 52(1–2): 91–118

DOI

31
Bhattacharjee A, Richards W G, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark E J, Lander E S, Wong W, Johnson B E, Golub T R, Sugarbaker D J, Meyerson M. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13790–13795

DOI

32
Dudoit S, Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 2003, 19(9): 1090–1099

DOI

33
Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kellam P. Consensus clustering and functional interpretation of gene-expression data. Genome Biology, 2004, 5(11): R94

DOI

34
Martoglio A M, Miskin J W, Smith S K, MacKay D J. A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer. Bioinformatics, 2002, 18(12): 1617–1624

DOI

35
West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson J A Jr, Marks J R, Nevins J R. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11462–11467

DOI

36
Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics, 2002, 18(1): 51–60

DOI

37
Pomeroy S L, Tamayo P, Gaasenbeek M, Sturla L M, Angelo M, McLaughlin M E, Kim J Y, Goumnerova L C, Black P M, Lau C, Allen J C, Zagzag D, Olson J M, Curran T, Wetmore C, Biegel J A, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis D N, Mesirov J P, Lander E S, Golub T R. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 2002, 415(6870): 436–442

DOI

38
Gordon G J, Richards W G, Sugarbaker D J, Jaklitsch M T, Bueno R. A prognostic test for adenocarcinoma of the lung from gene expression profiling data. Cancer Epidemiology, Biomarkers & Prevention, 2003, 12(9): 905–910

39
Gordon G J, Jensen R V, Hsiao L L, Gullans S R, Blumenstock J E, Ramaswamy S, Richards W G, Sugarbaker D J, Bueno R. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research, 2002, 62(17): 4963–4967

40
Dabney A R. Classification of microarrays to nearest centroids. Bioinformatics, 2005, 21(22): 4148–4154

DOI

41
Thomas J G, Olson J M, Tapscott S J, Zhao L P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 2001, 11(7): 1227–1236

DOI

42
Troyanskaya O G, Garber M E, Brown P O, Botstein D, Altman R B. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 2002, 18(11): 1454–1461

DOI

43
Dettling M, Bühlmann P. Boosting for tumor classification with gene expression data. Bioinformatics, 2003, 19(9): 1061–1069

DOI

44
Broët P, Lewin A, Richardson S, Dalmasso C, Magdelenat H. A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics, 2004, 20(16): 2562–2571

DOI

45
Nutt C L, Mani D R, Betensky R A, Tamayo P, Cairncross J G, Ladd C, Pohl U, Hartmann C, McLaughlin M E, Batchelor T T, Black P M, von Deimling A, Pomeroy S L, Golub T R, Louis D N. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 2003, 63(7): 1602–1607

46
Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets. BMC Bioinformatics, 2007, 8: 415

DOI

47
Furey T S, Cristianini N, Duffy N, Bednarski D W, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16(10): 906–914

DOI

48
Li J, Wong L. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics, 2002, 18(5): 725–734

DOI

49
Bø T H, Jonassen I. New feature subset selection procedures for classification of expression profiles. Genome Biology, 2002, 3(4): research0017.1–research0017.11

50
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1–3): 389–422

DOI

51
Zhang X, Lu X, Shi Q, Xu X Q, Leung H C, Harris L N, Iglehart J D, Miron A, Liu J S, Wong W H. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 2006, 7: 197

DOI

52
Furlanello C, Serafini M, Merler S, Jurman G. Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics, 2003, 4: 54

DOI

53
Li W, Xiong M. Tclass: tumor classification system based on gene expression profile. Bioinformatics, 2002, 18(2): 325–326

DOI

54
Inza I, Sierra B, Blanco R, Larrañaga P. Gene selection by sequential search wrapper approaches in microarray cancer class prediction. Journal of Intelligent and Fuzzy Systems, 2002, 12(1): 25–33

55
Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers. Genome Research, 2001, 11(11): 1878–1887

56
Liu J J, Cutler G, Li W, Pan Z, Peng S, Hoey T, Chen L, Ling X B. Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics, 2005, 21(11): 2691–2697

DOI

57
Peng S, Xu Q, Ling X B, Peng X, Du W, Chen L. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Letters, 2003, 555(2): 358–362

DOI

58
Li L, Weinberg C R, Darden T A, Pedersen L G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 2001, 17(12): 1131–1142

DOI

59
Ooi C H, Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 2003, 19(1): 37–44

DOI

60
Deutsch J M. Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics, 2003, 19(1): 45–52

DOI

61
Jirapech-Umpai T, Aitken S. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics, 2005. 6: 148

DOI

62
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23(19): 2507–2517

DOI

63
Krishnapuram B, Carin L, Hartemink A J. Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data. Journal of Computational Biology, 2004, 11(2-3): 227–242

DOI

64
Cawley G C, Talbot N L C. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics, 2006, 22(19): 2348–2355

DOI

65
Nguyen D V, Rocke D M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 2002, 18(1): 39–50

DOI

66
Nguyen D V, Rocke D M. Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics, 2002, 18(12): 1625–1632

DOI

67
Chang H Y, Nuyten D S, Sneddon J B, Hastie T, Tibshirani R, Sørlie T, Dai H, He Y D, van’t Veer L J, Bartelink H, van de Rijn M, Brown P O, van de Vijver M J. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10): 3738–3743

DOI

68
Khan J, Wei J S, Ringnér M, Saal L H, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu C R, Peterson C, Meltzer P S. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001, 7(6): 673–679

DOI

69
O’Neill M, Song L. Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics, 2003, 4: 13

DOI

70
Liu B, Cui Q, Jiang T, Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics, 2004, 5: 136

DOI

71
Linder R, Dew D, Sudhoff H, Theegarten D, Remberger K, Pöppl S J, Wagner M. The ‘subsequent artificial neural network’ (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses. Bioinformatics, 2004, 20(18): 3544–3552

DOI

72
Zhang W, Rekaya R, Bertrand K. A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer. Bioinformatics, 2006, 22(3): 317–325

DOI

73
Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 2006, 22(14): e184–e190

DOI

74
Goeman J J, Oosting J, Cleton-Jansen A M, Anninga J K, van Houwelingen H C. Testing association of a pathway with survival using gene expression data. Bioinformatics, 2005, 21(9): 1950–1957

DOI

75
Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 2005, 21(13): 3001–3008

DOI

76
Schumacher M, Binder H, Gerds T. Assessment of survival prediction models based on microarray data. Bioinformatics, 2007, 23(14): 1768–1774

DOI

77
Kaderali L, Zander T, Faigle U, Wolf J, Schultze J L, Schrader R. CASPAR: a hierarchical bayesian approach to predict survival times in cancer from gene expression data. Bioinformatics, 2006, 22(12): 1495–1502

DOI

78
Parmigiani G, Garrett-Mayer E S, Anbazhagan R, Gabrielson E. A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clinical Cancer Research, 2004, 10(9): 2922–2927

DOI

79
Fernandez-Teijeiro A, Betensky R A, Sturla L M, Kim J Y, Tamayo P, Pomeroy S L. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. Journal of Clinical Oncology, 2004, 22(6): 994–998

DOI

80
Barry W T, Nobel A B, Wright F A. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics, 2005, 21(9): 1943–1949

DOI

81
Zhang C, Lu X, Zhang X. Significance of gene ranking for classification of microarray samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3(3): 312–320

DOI

82
Dettling M. BagBoosting for tumor classification with gene expression data. Bioinformatics, 2004, 20(18): 3583–3593

DOI

83
Lu X, Li Y, Zhang X. A simple strategy for detecting outlier samples in microarray data. In: Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision. Kunming: IEEE, 2004, 2: 1331–1335

84
Gamberoni G, Storari S, Volinia S. Finding biological process modifications in cancer tissues by mining gene expression correlations. BMC Bioinformatics, 2006, 7: 6

DOI

85
Subramanian A, Tamayo P, Mootha V K, Mukherjee S, Ebert B L, Gillette M A, Paulovich A, Pomeroy S L, Golub T R, Lander E S, Mesirov J P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15545–15550

DOI

86
Al-Shahrour F, Diaz-Uriarte R, Dopazo J. Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 2005, 21(13): 2988–2993

DOI

Outlines

/