RESEARCH ARTICLE

Development and test in grid of 630 kVA three-phase high temperature superconducting transformer

  • Yinshun WANG , 1 ,
  • Xiang ZHAO 2 ,
  • Junjie HAN 2 ,
  • Huidong LI 1 ,
  • Yin GUAN 1 ,
  • Qing BAO 1 ,
  • Xi XU 1 ,
  • Shaotao DAI 1 ,
  • Naihao SONG 1 ,
  • Fengyuan ZHANG 1 ,
  • Liangzhen LIN 1 ,
  • Liye XIAO 1
Expand
  • 1. Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100080, China
  • 2. Technical Center of Tebian Electric Apparatus Stock Co., Ltd, Changji 831100, China

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A 630-kVA 10.5 kV/0.4 kV three-phase high temperature superconducting (HTS) power transformer was successfully developed and tested in a live grid. The windings were wound by hermetic stainless steel-reinforced multi-filamentary Bi2223/Ag tapes. The structures of primary windings are solenoid with insulation and cooling path among layers, and those of secondary windings consist of double-pancakes connected in parallel. Toroidal cryostat is made from electrical insulating glass fiber reinforced plastics (GFRP) materials with room temperature bore for commercial amorphous alloy core with five limbs. Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature. An insulation technology of double-half wrapping up the Bi2223/Ag tape with Kapton film is used by a winding machine developed by the authors. Fundamental characteristics of the transformer are obtained by standard short-circuit and no-load tests, and it is shown that the transformer meets operating requirements in a live grid.

Cite this article

Yinshun WANG , Xiang ZHAO , Junjie HAN , Huidong LI , Yin GUAN , Qing BAO , Xi XU , Shaotao DAI , Naihao SONG , Fengyuan ZHANG , Liangzhen LIN , Liye XIAO . Development and test in grid of 630 kVA three-phase high temperature superconducting transformer[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(1) : 104 -113 . DOI: 10.1007/s11460-009-0010-5

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2002AA306381), Tebian Electric Apparatus Stock Co., Ltd (TBEA) and the ‘100 Talents Project’ of Chinese Academy of Sciences, China (0640111C11).
1
Tsukamoto O. Roads for HTS power applications to go into the real world: Cost issues and technical issues. Cryogenics, 2005, 45(1): 3–10

DOI

2
Furuse M, Fuchino S, Higuchi N. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling.Physica C, 2003, 386: 474–479

DOI

3
Lin Y B, Lin L Z, Gao Z Y, Wen H M, Xu L, Shu L, Li J, Xiao L Y, Zhou L,Yuan G S. Development of HTS transmission power cable. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2371–2374

DOI

4
Funaki K, Iwakuma M, Kajikawa K, Takeo M, Suehiro J, Hara M, Yamafuji K, Konno M, Kasagawa Y, Okubo K, Yasukawa Y, Nose S, Ueyama M, Hayashi K, Sato K. Development of a 500 kVA-calss oxide-superconducting power transformer operated at liquid-nitrogen temperature. Cryogenics, 1998, 38(2): 211–220

DOI

5
Schwenterly S W, McConnell B W, Demko J A, Fadnek A, Hsu J, List F A, Walker M S, Hazelton D W, Murray F S, Rice J A, Trautwein C M, Shi X, Farrell R A, Bascuhan J, Hintz R E, Mehta S P, Aversa N, Ebert J A, Bednar B A, Neder D J, McIlheran A A, Michel P C, Nemce J J, Pleva E F, Swenton A C, Swets W, Longsworth R C, Johsnon R C, Jones R H, Nelson J K, Degeneff R C, Salon S J. Performance of a 1-MVA HTS demonstration transformer. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 680–684

DOI

6
Zueger H. 630 kVA high temperature superconducting transformer. Cryogenics, 1998, 38(11): 1169–1172

DOI

7
Hatta H, Nitta T, Oide T, Chiba M, Shirai Y, Mochida A. Experimental study on characteristics of superconducting fault current limiters connected in series. Superconductor Science & Technology, 2004, 17(5): 276–280

DOI

8
Elschner S, Breuer F, Noe M, Rettelbach T, Walter H, Bock J. Manufacturing and testing of MCP 2212 bifilar coils for a 10 MVA fault current limiter. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1980–1983

DOI

9
Barnes P N, Sumption M D, Rhoads G L. Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings. Cryogenics, 2005, 45(10-11): 670–686

DOI

10
Luongo C A, Baldwin T, Ribeiro P, Weber C M. A 100 MJ SMES demonstration at FSU-CAPS. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1800–1805

DOI

11
Meinert M, Leghissa M, Schlosser R, Schmidt H. System test of a 1-MVA-HTS-transformer connected to a converter-fed drive for rail vehicles. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2348–2351

DOI

12
Schlosser R, Schmidt H, Leghissa M, Meinert M. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2325–2330

DOI

13
Tixador P, Donnier-Valentin G, Maher E. Design and construction of a 41 kVA Bi/Y transformer. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2331–2336

DOI

14
Wang Y S, Zhao X, Li H D, Lu G H, Xiao L Y, Lin L Z, Guan Y, Bao Q, Xu X, Zhu Z Q, Wang Z K, Dai S T, Hui D. Development of solenoid and double pancake windings for a three-phase 26 kVA HTS transformer. IEEE Transactions on Applied Superconductivity , 2004, 14(2): 924–927

DOI

15
Wang Y S, Zhao X, Li H D, Lu G H, Xiao L Y, Lin L Z, Hui D Dai S D, . A three-phase 26 kVA HTS power transformer. In: Proceedings of the Twentieth International Cryogenic Engineering Conference (ICEC20). Elsevier, 2005, 693–696

16
Wang Y S, Han J J, Zhao X, Li H, Guan Y, Bao Q, Xiao L, Lin L, Zhu Z, Dai S, Hui D. Development of a 45 kVA single-phase model HTS transformer. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1477–1480

DOI

17
Iwakuma M, Nishimura K, Kajikawa K, Funaki K, Hayashi H, Tsutsumi K, Tomioka A, Konno M, Nose S. Current distribution in superconducting parallel conductors wound into pancake coils. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 861–864

DOI

18
Magnusson N, Wolfbrandt A. AC losses in high-temperature superconducting tapes exposed to longitudinal magnetic fields. Cryogenics, 2001, 41(10): 721–724

DOI

19
Magnusson N. Semi-empirical model of the losses in HTS tapes carrying ac currents in ac magnetic fields applied parallel to the tape face,Physica C, 2001, 349(3-4): 225–234

DOI

20
Rabbers J J, van der Laan D C, ten Haken B, ten Kate H H J. Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current. IEEE Transasctions on Applied Superconductivity, 1999, 9(2): 1185–1188

DOI

Options
Outlines

/