RESEARCH ARTICLE

Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology

  • Lei XU
Expand
  • Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

Received date: 01 Dec 2010

Accepted date: 07 Jan 2011

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang (BYY) harmony learning from a perspective of problem solving, parameter learning, and model selection. In a complementary role, the paper provides further insights from another perspective that a co-dimensional matrix pair (shortly co-dim matrix pair) forms a building unit and a hierarchy of such building units sets up the BYY system. The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair, which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning. Besides updating typical algorithms of factor analysis (FA), binary FA (BFA), binary matrix factorization (BMF), and nonnegative matrix factorization (NMF) to share such a mechanism, we are also led to (a) a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA (LFA); (b) an alternative formulation of graph Laplacian based linear manifold learning; (c) a codecomposition of data and covariance for learning regularization and data integration; and (d) a co-dim matrix pair based generalization of temporal FA and state space model. Moreover, with help of a co-dim matrix pair in Hadamard product, we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model. Furthermore, we address that these advances provide with new tools for network biology studies, including learning transcriptional regulatory, Protein-Protein Interaction network alignment, and network integration.

Cite this article

Lei XU . Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology[J]. Frontiers of Electrical and Electronic Engineering, 2011 , 6(1) : 86 -119 . DOI: 10.1007/s11460-011-0135-1

1
Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach, Frontiers of Electrical and Electronic Engineering in China, 2010, 5(3): 281-328

DOI

2
Anderson T W, Rubin H. Statistical inference in factor analysis. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. 1956, 5: 111-150

3
Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika, 1976, 57: 69-76

4
Bozdogan H, Ramirez D E. FACAIC: model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika, 1988, 53(3): 407-415

DOI

5
Belouchrani A, Cardoso J. Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation. In: Proceedings of NOLTA95. 1995, 49-53

6
Xu L. Bayesian Kullback Ying-Yang dependence reduction theory. Neurocomputing, 1998, 22(1-3): 81-111

DOI

7
Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units, Neurocomputing, 2003, 51:277-301

DOI

8
Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902

DOI

9
Xu L. Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing-Letters and Reviews, 2003, 1(1): 1-52

10
Moulines E, Cardoso J, Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proc. ICASSP97. 1997, 3617-3620

11
Attias H. Independent factor analysis. Neural Computation, 1999, 11(4): 803-851

DOI

12
Liu Z Y, Chiu K C, Xu L. Investigations on non-Gaussian factor analysis. IEEE Signal Processing Letters, 2004, 11(7): 597-600

DOI

13
Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey (PA): IGI Global. 2008, 903-912

DOI

14
Saund E. A multiple cause mixture model for unsupervised learning. Neural Computation, 1995, 7(1): 51-71

DOI

15
Zhang B L, Xu L, Fu M Y. Learning multiple causes by competition enhanced least mean square error reconstruction. International Journal of Neural Systems, 1996, 7(3): 223-236

DOI

16
Reckase M D. The past and future of multidimensional item response theory. Applied Psychological Measurement, 1997, 21(1): 25-36

DOI

17
Moustaki I, Knott M. Generalized latent trait models. Psychometrika, 2000, 65(3): 391-411

DOI

18
Bartholomew D J, Knott M. Latent variable models and factor analysis, Kendalls, Library of Statistics, Vol. 7. New York: Oxford University Press, 1999

19
Paatero P, Tapper U. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5(2): 111-126

DOI

20
Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization. Nature, 1999, 401(6755): 788-791

DOI

21
Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process, 2001, 13: 556-562

22
Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 2008, 30(2): 713-730

DOI

23
Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics (Oxford, England), 2007, 23(12): 1495-1502

DOI

24
Chen Y, Rege M, Dong M, Hua J. Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems, 2008, 17(3): 355-379

DOI

25
Ho N, Vandooren P. Non-negative matrix factorization with fixed row and column sums. Linear Algebra and Its Applications, 2008, 429(5-6): 1020-1025

DOI

26
Cemgil A T. Bayesian Inference for Nonnegative Matrix Factorisation Models, Computational Intelligence and Neuroscience, 2009

27
Yang Z, Zhu Z, Oja E. Automatic rank determination in projective nonnegative matrix factorization. Lecture Notes in Computer Science: Latent Variable Analysis and Signal Separation, 2010, (6365): 514-521

28
Tu S, Chen R, Xu L. A binary matrix factorization algorithm for protein complex prediction. In: Proceedings of the BIBM 2010 International Workshop on Computational Proteomics, Hong Kong, December 18-21, 2010

29
Redner R A,Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239

DOI

30
Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151

DOI

31
McLachlan G J, Geoffrey J. The EM Algorithms and Extensions. Wiley, 1997

32
Xu L. Multisets modeling learning: a unified theory for supervised and unsupervised learning. In: Proceedings of IEEE ICNN94. 1994, I: 315-320

33
Xu L. A unified learning framework: multisets modeling learning. In: Proceedings of WCNN95. 1995, 1: 35-42

34
Xu L. Rival penalized competitive learning, finite mixture, and multisets clustering. In: Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska, vol. II. 1998, 2525-2530

35
Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks, 2002, (8-9): 1125-1151

DOI

36
Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825

DOI

37
Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396

DOI

38
He X, Niyogi P. Locality Preserving Projections. In: Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, 2003, 152-160

39
Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-283

DOI

40
Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396

DOI

41
Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143

DOI

42
Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 1996, 58(1): 267-288

43
Hansen L K, Goutte C. Regularization with a pruning prior. Neural Networks, 1997, 10(6): 1053-1059

DOI

44
Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464

DOI

45
Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471

DOI

46
Rissanen J. Basics of estimation. Frontiers of Electrical and Electronic Engineering in China, 2010, 5(3): 274-280

DOI

47
Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Artificial Intelligence and Statistics, Morgan Kaufmann. 2001, 27-34

48
Choudrey R A, Roberts S J. Variational mixture of Bayesian independent component analyzers. Neural Computation, 2003, 15(1): 213-252

DOI

49
McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367

50
Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703

DOI

51
Xu L, Oja E. Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching. In: Goos G, Hartmanis J, eds. Lecture Notes in Computer Sciences, Springer-Verlag, 1989, 412: 151-160

52
Conte D, Foggiay P, Sansoney C, Vento M. Thirty years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3): 265-298

DOI

53
Xu L, Klasa S. A PCA like rule for pattern classification based on attributed graph. In: Proceedings of 1993 International Joint Conference on Neural Networks (IJCNN93), Nagoya. 1993, 1281-1284

54
Xu L, King I. A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2001, 31(5): 812-817

55
Li H B, Stoica P, Li J. Computationally efficient maximum likelihood estimation of structured covariance matrices. IEEE Transactions on Signal Processing, 1999, 47(5): 1314-1323

DOI

56
Burg J, Luenberger D, Wenger D. Estimation of structured covariance matrices. Proceedings of the IEEE, 1982, 70(9): 963-974

DOI

57
Xu L. Beyond PCA learning: from linear to nonlinear and from global representation to local representation. In: Proceedings of ICONIP94. 1994, 2: 943-949

58
Xu L. Vector quantization by local and hierarchical LMSER. In: Proceedings of 1995 Intl Conf.on Artificial Neural Networks (ICANN95), Paris. 1995, II: 575-579

59
Hinton G E, Dayan P, Revow M. Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks, 1997, 8(1): 65-74

DOI

60
Liu Z Y, Chiu K C, Xu L. Strip line detection and thinning by RPCL-based local PCA. Pattern Recognition Letters, 2003, 24(14): 2335-2344

DOI

61
Liu Z Y, Xu L. Topological local principal component analysis. Neurocomputing, 2003, 55(3-4): 739-745

DOI

62
Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation, 1999, 11(2): 443-482

DOI

63
Salah A A, Alpaydin E. Incremental mixtures of factor analyzers. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge: IEEE Press, 2004, 1: 276-279

DOI

64
Utsugi A, Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computation, 2001, 13(5): 993-1002

DOI

65
Ghahramani Z, Beal M. Variational inference for Bayesian mixtures of factor analysers, Advances in neural information processing systems 12. Cambridge, MA: MIT Press, 2000, 449-455

66
Xu L, Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family. In: Zurada , eds. Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures), LNCS5050, 2008, 48-78

DOI

67
Xu L. Learning algorithms for RBF functions and subspace based functions. In: Olivas E S, , eds. Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques, Hershey (PA): IGI Global. 2009, 60-94

68
Brown R G, Hwang P Y C. Introduction to random signals and applied Kalman filtering. John Wiley & Sons, Inc., 1997

69
Xu L. Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling. In: Wong K M, Yeung D Y, King I, , eds. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. Berlin: Springer-Verlag, 1997, 25-60

70
Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks, Washington. 1999, 2: 949-954

71
Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control. In: Proceedings of ICONIP98, Kitakyushu. 1998, 2: 877-884

72
Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation, 2000, 12(4): 831-864

DOI

73
Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144

DOI

74
Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849

DOI

75
Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295

DOI

76
Liao J C, Boscolo R, Yang Y L, Tran L M, Sabatti C, Roychowdhury V P. Network component analysis: reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15522-15527

DOI

77
Boulesteix A L, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology & Medical Modelling, 2005, 2(1): 23

DOI

78
Brynildsen M P, Tran L M, Liao J C. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics (Oxford, England), 2006, 22(24): 3040-3046

DOI

79
Brynildsen M P, Wu T Y, Jang S S, Liao J C. Biological network mapping and source signal deduction. Bioinformatics (Oxford, England), 2007, 23(14): 1783-1791

DOI

80
Stockham T G, Cannon T M, Ingebretsen R B. Blind deconvolution through digital signal processing. Proceedings of the IEEE, 1975, 63(4): 678-692

DOI

81
Kundur D, Hatzinakos D. Blind image deconvolution revisited. IEEE Signal Processing Magazine, 1996, 13(6): 61-63

DOI

82
Xu L, Yan P F, Chang T. Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem, SCIENTIA SINICA, Series A, 1987, (12): 1318-1344

83
Zhou Z H. When semi-supervised learning meets ensemble learning. Frontiers of Electrical and Electronic Engineering in China, 2011, 6(1): 6-16

DOI

84
De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807

DOI

85
Han J D. Understanding biological functions through molecular networks. Cell Research, 2008, 18(2): 224-237

DOI

86
Davies M. Identifiability Issues in Noisy ICA. IEEE SIGNAL PROCESSING LETTERS, 2004, 11(5): 470-473

DOI

87
Morris C. Natural exponential families with quadratic variance functions. Annals of Statistics, 1982, 10(1): 65-80

DOI

88
McCullagh P, Nelder J. Generalized Linear Models. 2nd ed. Boca Raton: Chapman and Hall/CRC, 1989

89
Gorman J W, Toman R J. Selection of variables for fitting equations to data. Technometrics, 1966, 8: 27-51

DOI

90
Mallows C L. Some comments on Cp. Technometrics, 1973, 15: 661-675

DOI

91
Wallace C S, Boulton D M. An information measure for classification. Computer Journal, 1968, 11(2): 185-194

92
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 714-723

DOI

93
Solomonoff R J. A formal theory of inductive inference. Part I. Information and Control, 1964, 7(1): 1-22

DOI

94
Kolmogorov A N. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1965, 1(1): 1-11

95
Vapnik V. The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995

96
Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649

DOI

97
Xu L, Krzyzak A, Oja E. Unsupervised and supervised classifications by rival penalized competitive learning. In: Proceedings of the 11th International Conference on Pattern Recognition. 1992, I: 672-675

98
Tu S K, Xu L. Parameterizations make different model selections: empirical findings from factor analysis, to appear on Frontiers of Electrical and Electronic Engineering in China, 2011

99
Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 346-353

100
Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47(3): 369-401

DOI

101
He X F, Lin B B. Tangent space learning and generalization. Frontiers of Electrical and Electronic Engineering in China, 2011, 6(1): 27-42

DOI

102
Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395-416

DOI

103
Chung F R. Spectral Graph Theory. Amer.Math. Soc., Providence, RI. MR1421568, 1997

104
Xu L. Distribution approximation, combinatorial optimization, and Lagrange-Barrier. In: Proceedings of International Joint Conference on Neural Networks 2003 (IJCNN 03), Jantzen Beach, Portland. 2003, 2354-2359

105
Xu L. Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In: Proceedings Of World Congress on Neural Networks. San Diego, CA. 1994, 399-404

106
Xu L. On the hybrid LT combinatorial optimization: new U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In: Proceedings of Intl. Conf. on Neural Information Processing, Beijing. 1995, 309-312

107
Xu L. One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization. In: Advances in neural networks: ISNN 2005, LNCS 3496. Berlin: Springer-Verlag, 2005, 5-20

DOI

108
Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation, 2007, 19(2): 546-569

DOI

109
Xu L, Amari S I. Combining Classifiers and Learning Mixture-of-Experts, In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. IGI Global (IGI) publishing company, 2008, 318-326

DOI

110
Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153

DOI

111
Sun N, Zhao H Y. Reconstructing transcriptional regulatory networks through genomics data. Statistical Methods in Medical Research, 2009, 18(6): 595-617

DOI

112
Bar-Joseph Z, Gerber G K, Lee T I, Rinaldi N J, Yoo J Y, Robert F, Gordon D B, Fraenkel E, Jaakkola T S, Young R A, Gifford D K. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21(11): 1337-1342

DOI

113
De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807

DOI

114
Singh R, Xu J B, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12763-12768

DOI

115
Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 12123-12128

DOI

116
Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N, Li G, Chen R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450

DOI

117
Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Molecular Systems Biology, 2007, 3: 88

DOI

118
Pinkert S, Schultz J, Reichardt J. Protein interaction networks more than mere modules. PLoS Computational Biology, 2010, 6(1): e1000659

DOI

119
Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34(2): 166-176

DOI

120
Reiss D J, Baliga N S, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics, 2006, 7(1): 280

DOI

121
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology, 2006, 7(5): R37 (1-14)

122
Youn A, Reiss D J, Stuetzle W. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics (Oxford, England), 2010, 26(15): 1879-1886

DOI

123
Holter N S, Mitra M, Maritan A, Cieplak M, Banavar J R, Fedoroff N V. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8409-8414

DOI

124
Yeung M K, Tegnr J, Collins J J. Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6163-6168

DOI

125
Alter O, Brown P O, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(18): 10101-10106

DOI

126
Alter O, Brown P O, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3351-3356

DOI

127
Bussemaker H J, Li H, Siggia E D. Regulatory element detection using correlation with expression. Nature Genetics, 2001, 27(2): 167-174

DOI

128
Lee S I, Batzoglou S. Application of independent component analysis to microarrays. Genome Biology, 2003, 4(11): R76

DOI

129
Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics (Oxford, England), 2002, 18(1): 51-60

DOI

130
Sun N, Carroll R J, Zhao H. Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 7988-7993

DOI

131
Sabatti C, James G M. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 2006, 22(6): 739-746

DOI

132
Liu X, Jessen WJ, Sivaganesan S, Aronow B J, Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data. BMC Bioinformatics, 2007, 8(1): 283

DOI

133
Xing B, van der Laan M J. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. Journal of Computational Biology, 2005, 12(2): 229-246

DOI

134
Pournara I, Wernisch L. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 2007, 8(1): 61

DOI

135
Gardner T S, di Bernardo D, Lorenz D, Collins J J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 2003, 301(5629): 102-105

DOI

136
Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D L, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics (Oxford, England), 2004, 20(9): 1361-1372

DOI

137
Beal M J, Falciani F, Ghahramani Z, Rangel C, Wild D L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics (Oxford, England), 2005, 21(3): 349-356

DOI

138
Sanguinetti G, Lawrence N D, Rattray M. Probabilistic inference of transcription factor concentrations and genespecific regulatory activities. Bioinformatics (Oxford, England), 2006, 22(22): 2775-2781

DOI

139
Yamaguchi R, Higuchi T. State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast. International Journal of Data Mining and Bioinformatics, 2006, 1(1): 77-87

DOI

140
Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a statespace model with hidden variables to infer transcription factor activities. Bioinformatics (Oxford, England), 2006, 22(6): 747-754

DOI

141
Inoue L Y, Neira M, Nelson C, Gleave M, Etzioni R. Cluster-based network model for time-course gene expression data. Biostatistics (Oxford, England), 2007, 8(3): 507-525

DOI

142
Martin S, Zhang Z, Martino A, Faulon J L. Boolean dynam ics of genetic regulatory networks inferred from microarray time series data. Bioinformatics (Oxford, England), 2007, 23(7): 866-874

DOI

143
Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones D S, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics (Oxford, England), 2008, 24(7): 932-942

DOI

144
Xiong H, Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics (Oxford, England), 2008, 24(4): 553-560

DOI

145
Wu F X, Zhang W J, Kusalik A J. State-space model with time delays for gene regulatory networks. Journal of Biological System, 2004, 12(4): 483-500

DOI

146
Shiraishi Y, Kimura S, Okada M. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics (Oxford, England), 2010, 26(8): 1073-1081

DOI

147
Kim T Y, Kim H U, Lee S Y. Data integration and analysis of biological networks. Current Opinion in Biotechnology, 2010, 21(1): 78-84

DOI

148
Xu L, Pearl J. Structuring causal tree models with continuous variables. In: Proceedings of the 3rd Annual Conference on Uncertainty in Artificial Intelligence. 1987, 170-179

149
Xu L, Pearl J. Structuring Causal Tree Models with Continuous Variables. In: Kanal L N, Levitt T S, Lemmer J F, eds. Uncertainty in Artificial Intelligence 3. North Holland, Amsterdam, 1989, 209-219

Outlines

/