RESEARCH ARTICLE

Information in hierarchical modular system

  • Cheng-Yuan LIOU , 1 ,
  • Ming-Shing CHEN 1 ,
  • Daw-Chih LIOU 2
Expand
  • 1. Department of Computer Science and Information Engineering, Taiwan University, Taipei 10617, China
  • 2. Department of Electrical Engineering, Dong Hwa University, Hualien 97401, China

Received date: 22 Jun 2010

Accepted date: 20 Sep 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper presents a study on the hierarchical modular system (HMS). It shows how to generate the HMS by using the principle of extreme physical information. It also discusses the equal temperament music scale that has many shared properties with the HMS.

Cite this article

Cheng-Yuan LIOU , Ming-Shing CHEN , Daw-Chih LIOU . Information in hierarchical modular system[J]. Frontiers of Electrical and Electronic Engineering, 0 , 6(1) : 181 -189 . DOI: 10.1007/s11460-010-0122-y

1
Caianiello E R. Some remarks on organization and structure. Biological Cybernetics, 1977, 26(3): 151-158

2
Caianiello E R, Scarpetta G, Simoncelli G. A systemic study of monetary systems. International Journal of General Systems, 1982, 8(2): 81-92

3
Caianiello E R, Marinaro M, Scarpetta G, Simoncelli G. Structure and modularity in self-organizing complex systems. In: Caianiello E R, Aizerman M A, eds. Topics in the General Theory of Structure. D. Reidel Publishing Company, 1987, 5-57

4
Frieden B R. Estimation of distribution laws, and physical laws, by a principle of extremized physical information. Physica A, 1993, 198(1-2): 262-338

5
Lavis D A, Streater R F. Physics from Fisher information. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 2002, 33(2): 327-343

DOI

6
Brissaud J B. The meanings of entropy. Entropy, 2005, 7(1): 68-96

7
Hentsch J C. La circulation des coupures qui constituent une monnaie. Journal de la Societe de Statistique de Paris, 1973, 114(4): 279-293

8
Van Hove L. Optimal denominations for coins and bank notes: In defense of the principle of least effort. Journal of Money, Credit and Banking, 2001, 33(4): 1015-1021

DOI

9
Banknotes and coins circulation of EUR. http://www.ecb.int/stats/euro/circulation/html/index.en.html

10
USA: Major Cities. http://www.citypopulation.de/USA-Cities.html

11
Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630

DOI

12
Shore J E, Johnson R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, 1980, IT-26(1): 26-37

DOI

13
Liou C Y, Musicus B R. Separable cross-entropy approach to power spectrum estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(1): 105-113

DOI

14
Liou C Y, Musicus B R. Cross entropy approximation of structured Gaussian covariance matrices. IEEE Transactions on Signal Processing, 2008, 56(7): 3362-3367

DOI

15
Frieden B R. Science from Fisher Information: A Unification. Cambridge: Cambridge University Press, 2004

DOI

16
Isacoff S M. Temperament: The Idea That Solved Music’s Greatest Riddle. New York: Random House, Inc., 2001

17
Kohonen T. Self-Organizing Maps. Berlin: Springer, 2001

18
Voss R F, Clarke J. 1/f noise in music: Music from 1/f noise. Journal of the Acoustical Society of America, 1978, 63(1): 258-263

DOI

19
Frieden B R, Hughes R J. Spectral 1/f noise derived from extremized physical information. Physical Review E, 1994, 49(4): 2644-2649

DOI

Outlines

/