Image understanding, attention and human early visual cortex

Fang FANG , Yizhou WANG

Front. Electr. Electron. Eng. ›› 2012, Vol. 7 ›› Issue (1) : 85 -93.

PDF (575KB)
Front. Electr. Electron. Eng. ›› 2012, Vol. 7 ›› Issue (1) : 85 -93. DOI: 10.1007/s11460-012-0184-0
REVIEW ARTICLE
REVIEW ARTICLE

Image understanding, attention and human early visual cortex

Author information +
History +
PDF (575KB)

Abstract

This paper reviews our recent fMRI and psychophysical finding on: 1) perceived size representation in V1; 2) border ownership representation in V2; and 3) neural processing of partially occluded face. These findings demonstrate that the human early visual cortex not only performs local feature analyses, but also contributes significantly to high-level visual computation with assistance of attention-enabled cortical feedback. Moreover, by taking advantage of recent findings on early visual cortex from neuroscience and cognitive science, we build a biologically plausible attention model that can well predict human scanpaths on natural images.

Keywords

vision / attention / image understanding / early visual cortex

Cite this article

Download citation ▾
Fang FANG, Yizhou WANG. Image understanding, attention and human early visual cortex. Front. Electr. Electron. Eng., 2012, 7(1): 85-93 DOI:10.1007/s11460-012-0184-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wandell B A, Dumoulin S O, Brewer A A. Visual field maps in human cortex. Neuron, 2007, 56(2): 366-383

[2]

Fang F, Boyaci H, Kersten D, Murray S O. Attentiondependent representation of a size illusion in human V1. Current Biology, 2008, 18(21): 1707-1712

[3]

Wojciulik E, Kanwisher N, Driver J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology, 1998, 79(3): 1574-1578

[4]

Murray S O, He S. Contrast invariance in the human lateral occipital complex depends on attention. Current Biology, 2006, 16(6): 606-611

[5]

Nakayama K, Shimojo S, Silverman G H. Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception, 1989, 18(1): 55-68

[6]

Driver J, Baylis G C. Edge-assignment and figure-ground segmentation in short-term visual matching. Cognitive Psychology, 1996, 31(3): 248-306

[7]

Lee T S, Mumford D, Romero R, Lamme V A F. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15-16): 2429-2454

[8]

Zhou H, Friedman H S, von der Heydt R. Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 2000, 20(17): 6594-6611

[9]

Qiu F T, von der Heydt R. Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules. Neuron, 2005, 47(1): 155-166

[10]

Kourtzi Z, Kanwisher N. Representation of perceived object shape by the human lateral occipital complex. Science, 2001, 293(5534): 1506-1509

[11]

Andrews T J, Schluppeck D, Homfray D, Matthews P, Blakemore C. Activity in the fusiform gyrus predicts conscious perception of Rubin’s vase-face illusion. NeuroImage, 2002,17(2): 890-901

[12]

Fang F, Murray S O, Kersten D J, He S. Orientation-tuned fMRI adaptation in human visual cortex. Journal of Neurophysiology, 2005, 94(6): 4188-4195

[13]

Fang F, Boyaci H, Kersten D. Border ownership selectivity in human early visual cortex and its modulation by attention. Journal of Neuroscience, 2009, 29(2): 460-465

[14]

Albright T D, Stoner G R. Contextual influences on visual processing. Annual Review of Neuroscience, 2002, 25(1): 339-379

[15]

Grill-Spector K, Malach R. The human visual cortex. Annual Review of Neuroscience, 2004, 27(1): 649-677

[16]

Kanwisher N. Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11163-11170

[17]

Stanley D A, Rubin N. fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron, 2003, 37(2): 323-331

[18]

Hegde J, Fang F, Murray S O, Kersten D. Preferential responses to occluded objects in the human visual cortex. Journal of Vision, 2008, 8(4): 16-1-16-16

[19]

Grutzner C, Uhlhaas P J, Genc E, Kohler A, Singer W, Wibral M. Neuroelectromagnetic correlates of perceptual closure processes. Journal of Neuroscience, 2010, 30(24): 8342-8352

[20]

Sugita Y. Grouping of image fragments in primary visual cortex. Nature, 1999, 401(6750): 269-272

[21]

Pillow J, Rubin N. Perceptual completion across the vertical meridian and the role of early visual cortex. Neuron, 2002, 33(5): 805-813

[22]

Bakin J S, Nakayama K, Gilbert C D. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. Journal of Neuroscience, 2000, 20(21): 8188-8198

[23]

Lerner Y, Hendler T, Malach R. Object-completion effects in the human lateral occipital complex. Cerebral Cortex, 2002, 12(2): 163-177

[24]

Murray R F, Sekuler A B, Bennett P J. Time course of amodal completion revealed by a shape discrimination task. Psychonomic Bulletin & Review, 2001, 8(4): 713-720

[25]

Chen J, LiuB, Chen B, Fang F. Time course of amodal completion in face perception. Vision Research, 2009, 49(7): 752-758

[26]

Bar M, Tootell R B, Schacter D, Greve D, Fischl B, Mendola J, Rosen B, Dale A. Cortical mechanisms specific to explicit visual object recognition. Neuron, 2001, 29(2): 529-535

[27]

Lamme V A F, Zipser K, Spekreijse H. Masking interrupts figure-ground signals in V1. Journal of Cognitive Neuroscience, 2002, 14(7): 1044-1053

[28]

Chen J, Zhou T, Yang H, Fang F. Cortical dynamics underlying face completion in human visual system. Journal of Neuroscience, 2010, 30(49): 16692-16698

[29]

Fang F, He S. Viewer-centered object representation in the human visual system revealed by viewpoint aftereffect. Neuron, 2005, 45(5): 793-800

[30]

Wang W, Chen C,Wang Y, Jiang T, Fang F, Yao Y. Simulating human saccadic scanpath on natural images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2011, 441-448

[31]

Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609

[32]

Wang W, Wang Y, Huang Q, Gao W. Measuring visual saliency by site entropy rate. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2368-2375

[33]

Itti L, Koch C, Niebur E. A model of saliency based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259

[34]

Yao J G, Gao X, Yan H M, Li C Y. Field of attention for instantaneous object recognition. PLoS ONE, 2011, 6(1): e16343

[35]

Hou X, Zhang L. Dynamic visual attention: Searching for coding length increments. Advances in Neural Information Processing Systems, 2008, 21: 681-688

[36]

Sauer T, Yorke J, Casdagli M. Embedology. Journal of Statistical Physics, 1991, 65(3-4): 579-616

[37]

Bruce N, Tsotsos J. Saliency based on information maximization. Advances in Neural Information Processing Systems, 2006, 18: 155-162

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (575KB)

737

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/