Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method

Yanhong LIU , Jianyong LI , Chunwen LI

Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (4) : 547 -555.

PDF (178KB)
Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (4) : 547 -555. DOI: 10.1007/s11460-011-0183-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method

Author information +
History +
PDF (178KB)

Abstract

Using an energy-based Hamiltonian function method, this paper investigates the robust excitation control of multi-machine multi-load power systems described by a set of uncertain differential algebraic equations. First, we complete the dissipative Hamiltonian realization of the power system and adjust its operating point by the means of pre-feedback control. Then, based on the obtained Hamiltonian realization, we discuss the robust excitation control of the power system and put forward an H excitation control strategy. Simulation results demonstrate the effectiveness of the control scheme.

Keywords

nonlinear differential algebraic systems / multi-machine multi-load power systems / dissipative Hamiltonian realization / robust excitation control

Cite this article

Download citation ▾
Yanhong LIU, Jianyong LI, Chunwen LI. Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method. Front. Electr. Electron. Eng., 2011, 6(4): 547-555 DOI:10.1007/s11460-011-0183-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y, Gao G, Hill D J. Robust decentralized nonlinear controller design for multimachine power systems. Automatica, 1997, 33(9): 1725-1733

[2]

Akhrif O, Okou F A, Dessaint L A, Chmpagne R. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14(2): 620-628

[3]

Sun C, Zhao Z, Sun Y, Lu Q. Design of nonlinear robust excitation control for multimachine power systems. IEE Proceedings — Generation, Transmission and Distribution, 1996, 143(3): 253-257

[4]

Li G J, Lie T T, Soh C B, Yang G H. Decentralized nonlinear H∞ control for stability enhancement in power systems. IEE Proceedings — Generation, Transmission and Distribution, 1999, 146(1): 19-24

[5]

Cheng D, Xi Z, Hong Y, Qin H. Energy-based stabilization in power systems. In: Proceedings of the 14th IFAC World Congress. 1999, 297-303

[6]

Wang Y, Cheng D, Hong Y. Stabilization of synchronous generators with the Hamiltonian function approach. International Journal of Systems Science, 2001, 32(8): 971-978

[7]

Galaz M, Ortega R, Bazanella A S, Stankovic A M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica, 2003, 39(1): 111-119

[8]

Xi Z, Cheng D. Passivity-based stabilization and H∞ control of the Hamiltonian control systems with dissipation and its applications to power systems. International Journal of Control, 2000, 73(18): 1686-1691

[9]

Ortega R, Galaz M, Astolfi A, Sun Y, Shen T. Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Transactions on Automatic Control, 2005, 50(1): 60-75

[10]

Xi Z, Cheng D, Lu Q, Mei S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527-534

[11]

Wang Y, Cheng D, Liu Y, Li C. Adaptive H∞ excitation control of multimachine power systems via the Hamiltonian function method. International Journal of Control, 2004, 77(4): 336-350

[12]

Tsolas N, Arapostathis A, Varaiya P. A structure preserving energy function for power system transient stability analysis. IEEE Transactions on Circuits and Systems, 1985, 32(10): 1041-1049

[13]

Ortega R, Van der Schaft A J, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): 585-596

[14]

Ortega R, Van der Schaft A J, Mareels I, Maschke B. Putting energy back in control. IEEE Control Systems, 2001, 21(2): 18-33

[15]

Liu Y H, Li C W, Wu R B. Feedback control of nonlinear differential algebraic systems using Hamiltonian function method. Science in China, Series F: Information Sciences, 2006, 49(4): 436-445

[16]

Liu Y H, Li C W, Wang Y Z. Decentralized excitation control of multi-machine multi-load power systems using Hamiltonian function method. Acta Automatica Sinica, 2009, 35(7): 919-925

[17]

Hiskens I A, Hill D J. Energy functions, transient stability and voltage behavior in power systems with nonlinear loads. IEEE Transactions on Power Systems, 1989, 4(4): 1525-1533

[18]

Lu Q, Mei S, Sun Y. Nonlinear Control of Power Systems. Beijing: Tsinghua University Press, 2008 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (178KB)

631

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/