Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method

Yanhong LIU, Jianyong LI, Chunwen LI

PDF(178 KB)
PDF(178 KB)
Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (4) : 547-555. DOI: 10.1007/s11460-011-0183-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method

Author information +
History +

Abstract

Using an energy-based Hamiltonian function method, this paper investigates the robust excitation control of multi-machine multi-load power systems described by a set of uncertain differential algebraic equations. First, we complete the dissipative Hamiltonian realization of the power system and adjust its operating point by the means of pre-feedback control. Then, based on the obtained Hamiltonian realization, we discuss the robust excitation control of the power system and put forward an H excitation control strategy. Simulation results demonstrate the effectiveness of the control scheme.

Keywords

nonlinear differential algebraic systems / multi-machine multi-load power systems / dissipative Hamiltonian realization / robust excitation control

Cite this article

Download citation ▾
Yanhong LIU, Jianyong LI, Chunwen LI. Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method. Front Elect Electr Eng Chin, 2011, 6(4): 547‒555 https://doi.org/10.1007/s11460-011-0183-6

References

[1]
Wang Y, Gao G, Hill D J. Robust decentralized nonlinear controller design for multimachine power systems. Automatica, 1997, 33(9): 1725-1733
CrossRef Google scholar
[2]
Akhrif O, Okou F A, Dessaint L A, Chmpagne R. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14(2): 620-628
CrossRef Google scholar
[3]
Sun C, Zhao Z, Sun Y, Lu Q. Design of nonlinear robust excitation control for multimachine power systems. IEE Proceedings — Generation, Transmission and Distribution, 1996, 143(3): 253-257
CrossRef Google scholar
[4]
Li G J, Lie T T, Soh C B, Yang G H. Decentralized nonlinear H∞ control for stability enhancement in power systems. IEE Proceedings — Generation, Transmission and Distribution, 1999, 146(1): 19-24
[5]
Cheng D, Xi Z, Hong Y, Qin H. Energy-based stabilization in power systems. In: Proceedings of the 14th IFAC World Congress. 1999, 297-303
[6]
Wang Y, Cheng D, Hong Y. Stabilization of synchronous generators with the Hamiltonian function approach. International Journal of Systems Science, 2001, 32(8): 971-978
[7]
Galaz M, Ortega R, Bazanella A S, Stankovic A M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica, 2003, 39(1): 111-119
CrossRef Google scholar
[8]
Xi Z, Cheng D. Passivity-based stabilization and H∞ control of the Hamiltonian control systems with dissipation and its applications to power systems. International Journal of Control, 2000, 73(18): 1686-1691
CrossRef Google scholar
[9]
Ortega R, Galaz M, Astolfi A, Sun Y, Shen T. Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Transactions on Automatic Control, 2005, 50(1): 60-75
CrossRef Google scholar
[10]
Xi Z, Cheng D, Lu Q, Mei S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527-534
CrossRef Google scholar
[11]
Wang Y, Cheng D, Liu Y, Li C. Adaptive H∞ excitation control of multimachine power systems via the Hamiltonian function method. International Journal of Control, 2004, 77(4): 336-350
CrossRef Google scholar
[12]
Tsolas N, Arapostathis A, Varaiya P. A structure preserving energy function for power system transient stability analysis. IEEE Transactions on Circuits and Systems, 1985, 32(10): 1041-1049
CrossRef Google scholar
[13]
Ortega R, Van der Schaft A J, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): 585-596
CrossRef Google scholar
[14]
Ortega R, Van der Schaft A J, Mareels I, Maschke B. Putting energy back in control. IEEE Control Systems, 2001, 21(2): 18-33
CrossRef Google scholar
[15]
Liu Y H, Li C W, Wu R B. Feedback control of nonlinear differential algebraic systems using Hamiltonian function method. Science in China, Series F: Information Sciences, 2006, 49(4): 436-445
[16]
Liu Y H, Li C W, Wang Y Z. Decentralized excitation control of multi-machine multi-load power systems using Hamiltonian function method. Acta Automatica Sinica, 2009, 35(7): 919-925
CrossRef Google scholar
[17]
Hiskens I A, Hill D J. Energy functions, transient stability and voltage behavior in power systems with nonlinear loads. IEEE Transactions on Power Systems, 1989, 4(4): 1525-1533
CrossRef Google scholar
[18]
Lu Q, Mei S, Sun Y. Nonlinear Control of Power Systems. Beijing: Tsinghua University Press, 2008 (in Chinese)

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 60974005), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20094101120008), and the Nature Science Foundation of Henan Province (No. 092300410201).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(178 KB)

Accesses

Citations

Detail

Sections
Recommended

/