Graph-based semi-supervised learning
Changshui ZHANG , Fei WANG
Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (1) : 17 -26.
Graph-based semi-supervised learning
The recent years have witnessed a surge of interests in graph-based semi-supervised learning (GBSSL). In this paper, we will introduce a series of works done by our group on this topic including: 1) a method called linear neighborhood propagation (LNP) which can automatically construct the optimal graph; 2) a novel multilevel scheme to make our algorithm scalable for large data sets; 3) a generalized point charge scheme for GBSSL; 4) a multilabel GBSSL method by solving a Sylvester equation; 5) an information fusion framework for GBSSL; and 6) an application of GBSSL on fMRI image segmentation.
graph-based semi-supervised learning (GBSSL) / linear neighborhood propagation (LNP) / point charge model / fMRI image segmentation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |