Kernel feature extraction methods observed from the viewpoint of generating-kernels
Jian YANG
Kernel feature extraction methods observed from the viewpoint of generating-kernels
This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function. Based on this idea, we present two nonlinear feature extraction methods: generating kernel principal component analysis (GKPCA) and generating kernel Fisher discriminant (GKFD). These two methods are shown to be equivalent to the function-mapping-space PCA (FMS-PCA) and the function-mapping-space linear discriminant analysis (FMS-LDA) methods, respectively. This equivalence reveals that the generating kernel is actually determined by the corresponding function map. From the generating kernel point of view, we can classify the current kernel Fisher discriminant (KFD) algorithms into two categories: KPCA+ LDA based algorithms and straightforward KFD (SKFD) algorithms. The KPCA+ LDA based algorithms directly work on the given kernel and are not suitable for non-kernel functions, while the SKFD algorithms essentially work on the generating kernel from a given symmetric function and are therefore suitable for non-kernels as well as kernels. Finally, we outline the tensor-based feature extraction methods and discuss ways of extending tensor-based methods to their generating kernel versions.
kernel methods / feature extraction / principal component analysis (PCA) / Fisher linear discriminant analysis (FLD or LDA) / tensor-based methods
[1] |
Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1995
|
[2] |
Müller K R, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201
CrossRef
Google scholar
|
[3] |
Schölkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319
CrossRef
Google scholar
|
[4] |
Mika S, Rätsch G, Weston J, Schölkopf B, Müller K R. Fisher discriminant analysis with kernels. In: Proceedings of IEEE International Workshop on Neural Networks for Signal Processing IX. 1999, 41-48
|
[5] |
Mika S, Rätsch G, Schölkopf B, Smola A, Weston J, Müller K R. Invariant feature extraction and classification in kernel spaces. Advances in Neural Information Processing Systems, 1999, 12: 526-532
|
[6] |
Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10): 2385-2404
CrossRef
Google scholar
|
[7] |
Roth V, Steinhage V. Nonlinear discriminant analysis using kernel functions. In: Solla S A, Leen T K, Mueller K R, eds. Advances in Neural Information Processing Systems. 2000, 12: 568-574
|
[8] |
Mika S, Rätsch G, Weston J, Schölkopf B, Smola A, Müller K R. Constructing descriptive and discriminative non-linear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 623-628
CrossRef
Google scholar
|
[9] |
Yang M H. Kernel Eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. 2002, 215-220
CrossRef
Google scholar
|
[10] |
Lu J, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126
CrossRef
Google scholar
|
[11] |
Schölkopf B, Smola A. Learning with Kernels. Cambridge: MIT Press, 2002
|
[12] |
Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
|
[13] |
Xu J, Zhang X, Li Y. Kernel MSE algorithm: a unified framework for KFD, LS-SVM, and KRR. In: Proceedings of the International Joint Conference on Neural Networks. 2001, 1486-1491
|
[14] |
Billings S A, Lee K L. Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Networks, 2002, 15(2): 263-270
|
[15] |
Zheng W, Zhao L, Zou C. Foley-Sammon optimal discriminant vectors using kernel approach. IEEE Transactions on Neural Networks, 2005, 16(1): 1-9
CrossRef
Google scholar
|
[16] |
Yang J, Jin Z, Yang J Y, Zhang D, Frangi A F. Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognition, 2004, 37(10): 2097-2100
CrossRef
Google scholar
|
[17] |
Yang J, Frangi A F, Yang J Y, Zhang D, Jin Z. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230-244
CrossRef
Google scholar
|
[18] |
Xu Y, Zhang D, Jin Z, Li M, Yang J Y. A fast kernelbased nonlinear discriminant analysis for multi-class problems. Pattern Recognition, 2006, 39(6): 1026-1033
CrossRef
Google scholar
|
[19] |
Zhao J, Wang H, Ren H, Kee S C. LBP discriminant analysis for face verification. In: Proceeding of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. 2005, 3: 167
|
[20] |
Liu C. Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 725-737
CrossRef
Google scholar
|
[21] |
Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative common vector method with kernels. IEEE Transactions on Neural Networks, 2006, 17(6): 1550-1565
CrossRef
Google scholar
|
[22] |
Bach F R, Jordan MI. Kernel independent component analysis. Journal of Machine Learning Research, 2002, 3(1): 1-48
CrossRef
Google scholar
|
[23] |
Yang J, Gao X, Zhang D, Yang J Y. Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recognition, 2005, 38(10): 1784-1787
CrossRef
Google scholar
|
[24] |
Ma J. Function replacement vs. kernel trick. Neurocomputing, 2003, 50: 479-483
CrossRef
Google scholar
|
[25] |
Ma J, Theiler J, Perkins S. Two realizations of a general feature extraction framework. Pattern Recognition, 2004, 37(5): 875-887
CrossRef
Google scholar
|
[26] |
Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C. Text classification using string kernels. Journal of Machine Learning Research, 2002, 2(2): 419-444
CrossRef
Google scholar
|
[27] |
Chen W S, Yuen P C, Huang J, Lai J. Wavelet kernel construction for kernel discriminant analysis on face recognition. In: Proceeding of the 2006 Conference on Computer Vision and Pattern Recognition Workshop. 2006, 47-52
CrossRef
Google scholar
|
[28] |
Schölkopf B. Support vector learning. Dissertation for the Doctoral Degree. Berlin: Berlin Technical University, 1997
|
[29] |
Camps-Valls G, Martin-Guerrero J, Rojo-Alvarez J, Soria-Olivas E. Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing, 2004, 62: 501-506
CrossRef
Google scholar
|
[30] |
Ahonen T, Hadid A, Pietikäinen M. Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041
CrossRef
Google scholar
|
[31] |
Mangasarian L. Generalized support vector machines. In: Smola A J, Bartlett P, Schokopf B, Schuurmans D, eds. Advances in Large Margin Classifiers. 2000, 135-146
|
[32] |
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996
|
[33] |
Swets D L,Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836
CrossRef
Google scholar
|
[34] |
Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
CrossRef
Google scholar
|
[35] |
Yang J, Yang J Y. Why can LDA be performed in PCA transformed space? Pattern Recognition, 2003, 36(2): 563-566
CrossRef
Google scholar
|
[36] |
Liu C J, Wechsler H. Robust coding schemes for indexing and retrieval from large face databases. IEEE Transactions on Image Processing, 2000, 9(1): 132-137
CrossRef
Google scholar
|
[37] |
Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
CrossRef
Google scholar
|
[38] |
Liu K, Cheng Y Q, Yang J Y. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition, 1993, 26(6): 903-911
CrossRef
Google scholar
|
[39] |
Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
CrossRef
Google scholar
|
[40] |
Visani M, Garcia C, Laurent C. Comparing robustness of two-dimensional PCA and eigenfaces for face recognition. Lecture Notes in Computer Science, 2004, 3212: 717-724
CrossRef
Google scholar
|
[41] |
Zuo W M, Zhang D. K. Wang K. An assembled matrix distance metric for 2DPCA-based image recognition. Pattern Recognition Letters, 2006, 27(3): 210-216
|
[42] |
Zhang D Q, Zhou Z H. (2D)(2)PCA: Two-directional twodimensional PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1-3): 224-231
CrossRef
Google scholar
|
[43] |
Kong H,Wang L, Teoh E K, Li X, Wang J G, Venkateswarlu R. Generalized 2D principal component analysis for face image representation and recognition. Neural Networks, 2005, 18(5-6): 585-594
CrossRef
Google scholar
|
[44] |
Ye J. Generalized low rank approximations of matrices. Machine Learning, 2005, 61(1-3): 167-191
CrossRef
Google scholar
|
[45] |
Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13(4-5): 411-430
CrossRef
Google scholar
|
[46] |
He X, Yan S, Hu Y, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
CrossRef
Google scholar
|
[47] |
Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Advances in Neural Information Processing Systems, 2004, 17: 1569-1576
|
[48] |
Li M, Yuan B. 2D-LDA: a novel statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532
CrossRef
Google scholar
|
[49] |
Xiong H, Swamy M, Ahmad M. Two-dimensional FLD for face recognition. Pattern Recognition, 2005, 38(7): 1121-1124
CrossRef
Google scholar
|
[50] |
Yang J, Zhang D, Yong X, Yang J. Two-dimensional linear discriminant transform for face recognition. Pattern Recognition, 2005, 38(7): 1125-1129
CrossRef
Google scholar
|
[51] |
Zuo W, Zhang D, Yang J, Wang K. BDPCA plus LDA: A novel fast feature extraction technique for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2006, 36(4): 946-953
|
[52] |
Zou C, Sun N, Ji Z, Zhao L. 2DCCA: a novel method for small sample size face recognition. In: Proceedings of IEEE Workshop on Applications of Computer Vision. 2007, 43
|
[53] |
Lee S H, Choi S. Two-dimensional canonical correlation analysis. IEEE Signal Processing Letters, 2007, 14(10): 735-738
CrossRef
Google scholar
|
[54] |
Gao Q, Zhang L, Zhang D, Xu H. Independent components extraction from image matrix. Pattern Recognition Letters, 2010, 31(3): 171-178
CrossRef
Google scholar
|
[55] |
Chen S B, Zhao H F, Kong M, Luo B. 2d-lpp: a twodimensional extension of locality preserving projections. Neurocomputing, 2007, 70(4-6): 912-921
|
[56] |
Hu D W, Feng G Y, Zhou Z T. Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognition, 2007, 40(1): 339-342
CrossRef
Google scholar
|
[57] |
Xu D, Yan S, Zhang L, Lin S, Zhang H J, Huang T S. Reconstruction and recognition of tensor-based objects with concurrent subspaces analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(1): 36-47
CrossRef
Google scholar
|
[58] |
Wang H, Ahuja N. A tensor approximation approach to dimensionality reduction. Journal of Computer Vision, 2008, 76(3): 217-229
CrossRef
Google scholar
|
[59] |
Tao D, Li X, Wu X, Maybank S J. General tensor discriminant analysis and gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1700-1715
CrossRef
Google scholar
|
[60] |
Lu H, Plataniotis K N, Venetsanopoulos A N. MPCA: multilinear principal component analysis of tensor objects. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39
CrossRef
Google scholar
|
[61] |
Zhang L, Gao Q, Zhang D. Directional independent component analysis with tensor representation. In: Proceedings of Computer Vision and Pattern Recognition. 2008, 1-7
|
[62] |
Sun N, Wang H, Ji Z, Zou C, Zhao L. An efficient algorithm for kernel two-dimensional principal component analysis. Neural Computing & Applications, 2008, 17(1): 59-64
CrossRef
Google scholar
|
[63] |
Liu J, Chen S, Zhou Z H, Tan X. Generalized low-rank approximations of matrices revisited. IEEE Transactions on Neural Networks, 2010, 21(4): 621-632
CrossRef
Google scholar
|
/
〈 | 〉 |