PDF(124 KB)
Rough set extensions in incomplete information
systems
- WANG Guoyin1, HU Feng1, GUAN Lihe2
Author information
+
1.School of Information Science and Technology, Southwest Jiaotong University;Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications; 2.School of Information Science and Technology, Southwest Jiaotong University;Institute of Information and Calculation Science, Chongqing Jiaotong University;
Show less
History
+
Published |
05 Dec 2008 |
Issue Date |
05 Dec 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Pawlak Z . Roughsets. International Journal of Computerand Information Sciences, 1982, 11: 341–356. doi:10.1007/BF01001956
2. Pawlak Z . Roughsets: a new approach to vagueness. Fuzzy Logic for the Managementof Uncertainty. New York: John Wiley & Sons, 1992 : 105–118
3. Stefanowski J, Tsoukiès A . On the extension of roughsets under incomplete information. In: Proceedings of the 7th International Workshop on New Directions inRough Sets, Data Mining, and Granular-Soft Computing (RSFDGrC'99).Lecture Notes In Computer Science, Berlin: Springer, 1999, 1711: 73–82
4. Wang G Y . Rough Set Theory and Knowledge Acquisition. Xi'an: Xi'an Jiaotong UniversityPress, 2001, 38–39 (in Chinese)
5. Grzymala-Busse J W . Rough set strategies to data with missing attribute values. In: Proceedings of the Workshop on Foundationsand New Directions in Data Mining, associated with the 3rd IEEE InternationalConference on Data Mining, 2003, 56–63
6. Kryszkiewicz M . Probabilisticapproach to association rules in incomplete databases.In: Proceedings of the First International Conferenceon Web-Age Information Management (WAIM'2000). Lecture Notes in ComputerScience, Berlin: Springer, 2000, 1846: 133–138
7. Grzymala-Busse J W, Hu M . A comparison of several approachesto missing attribute values in data mining. In: Proceedings of the Second International Conference on Rough Setsand Current Trends in Computing (RSCTC'2000). Lecture Notes in ComputerScience, Berlin: Springer, 2001, 2005: 378–385
8. Kryszkiewicz M . Roughset approach to incomplete information systems. Information Sciences, 1998, 112(1): 39–49. doi:10.1016/S0020-0255(98)10019-1
9. Stefanowski J, Tsoukiès A . Incomplete information tablesand rough classification. ComputationalIntelligence, 2001, 17(3): 545–566. doi:10.1111/0824-7935.00162
10. Stefanowski J, Tsoukiès A . Valued tolerance and decisionrules. In: Proceedings of the Second InternationalConference on Rough Sets and Current Trends in Computing (RSCTC'2000).Lecture Notes in Computer Science, Berlin: Springer, 2001, 2005: 212–219
11. Wang G Y . Extension of rough set under incomplete information systems. Journal of Computer Research and Development, 2002, 39(10): 1238–1243 (in Chinese)
12. Grzymala-Busse J W . LERS: a system for learning from examples based on rough sets. In: Slowinski R ed. Intelligent Decision Support, Handbook of Applications and Advancesof the Rough Sets Theory. Kluwer AcademicPublishers, 1992, 3–18
13. Grzymala-Busse J W . A rough set approach to data with missing attribute values. In: Proceedings of the First International Conferenceof Rough Sets and Knowledge Technology (RSKT'2006). Lecture Notesin Computer Science, Berlin: Springer, 2006, 4062: 58–67
14. Wang G Y . Domain-oriented data-driven data mining based on rough sets. In: Proceedings of International Forum on Theoryof GrC from Rough Set Perspective (IFTGrCRSP2006), 2006, 46–46
15. Ziarko W . Variableprecision rough sets model. Journal ofComputer and System Sciences, 1993, 46(1): 39–59. doi:10.1016/0022-0000(93)90048-2