Strain and process engineering toward continuous industrial fermentation
Strain and process engineering toward continuous industrial fermentation
Most current biotechnology industries are based on batch or fed-batch fermentation processes, which often show low productivity and high production costs compared to chemical processes. To increase the economic competitiveness of biological processes, continuous fermentation technologies are being developed that offer significant advantages in comparison with batch/fed-batch fermentation processes, including: (1) removal of potential substrates and product inhibition, (2) prolonging the microbial exponential growth phase and enhancing productivity, and (3) avoiding repeated fermentation preparation and lowering operation and installation costs. However, several key challenges should be addressed for the industrial application of continuous fermentation processes, including (1) contamination of the fermentation system, (2) degeneration of strains, and (3) relatively low product titer. In this study, we reviewed and discussed metabolic engineering and synthetic biology strategies to address these issues.
continuous fermentation / productivity / contamination / strain degeneration / metabolic engineering
[1] |
Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science, 2017, 355(6320): aag0804
CrossRef
ADS
Google scholar
|
[2] |
Formenti L R, Nørregaard A, Bolic A, Hernandez D Q, Hagemann T, Heins A L, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey K V. Challenges in industrial fermentation technology research. Biotechnology Journal, 2014, 9(6): 727–738
CrossRef
ADS
Google scholar
|
[3] |
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6(11): 1348–1357
CrossRef
ADS
Google scholar
|
[4] |
Li T, Chen X B, Chen J C, Wu Q, Chen G Q. Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnology Journal, 2014, 9(12): 1503–1511
CrossRef
ADS
Google scholar
|
[5] |
Verbelen P J, De Schutter D P, Delvaux F, Verstrepen K J, Delvaux F R. Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters, 2006, 28(19): 1515–1525
CrossRef
ADS
Google scholar
|
[6] |
Talebnia F, Taherzadeh M J. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Journal of Biotechnology, 2006, 125(3): 377–384
CrossRef
ADS
Google scholar
|
[7] |
Mussatto S I, Dragone G, Guimaraes P M, Silva J P, Carneiro L M, Roberto I C, Vicente A, Domingues L, Teixeira J A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 2010, 28(6): 817–830
CrossRef
ADS
Google scholar
|
[8] |
Ghose T K, Tyagi R D. Rapid ethanol fermentation of cellulose hydrolysate. I. Batch versus continuous systems. Biotechnology and Bioengineering, 1979, 21(8): 1387–1400
CrossRef
ADS
Google scholar
|
[9] |
Ding S F, Tan T W. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry, 2006, 41(6): 1451–1454
CrossRef
ADS
Google scholar
|
[10] |
Chen Y, Liu Q, Zhou T, Li B, Yao S, Li A, Wu J, Ying H. Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. Journal of Microbiology and Biotechnology, 2013, 23(4): 511–517
CrossRef
ADS
Google scholar
|
[11] |
Yue H T, Ling C, Yang T, Chen X B, Chen Y L, Deng H T, Wu Q, Chen J C, Chen G Q. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnology for Biofuels, 2014, 7(1): 1–12
CrossRef
ADS
Google scholar
|
[12] |
Mitsumasu K, Liu Z S, Tang Y Q, Akamatsu T, Taguchi H, Kida K. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. Journal of Bioscience and Bioengineering, 2014, 118(6): 689–695
CrossRef
ADS
Google scholar
|
[13] |
Branyik T, Vicente A, Cruz J M, Teixeira J. Continuous primary beer fermentation with brewing yeast immobilized on spent grains. Journal of the Institute of Brewing, 2002, 108(4): 410–415
CrossRef
ADS
Google scholar
|
[14] |
WangJLihan Z IBaiF. Co-production of ethanol and yeast during continuous fermentation using self-flocculating fusant SPSC01. Journal of Chemical Industry and Engineering, 2004, 55(6): 1024−1027 (in Chinese)
|
[15] |
Ren N Q, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy, 2006, 31(15): 2147–2157
CrossRef
ADS
Google scholar
|
[16] |
GaoM TKoide MGotouRTakanashiHHirataM HanoT. Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochemistry, 2004, 40(3–4): 1033–1036
|
[17] |
Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T. L-Lysine production in continuous culture of an L-lysine hyperproducing mutant of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2004, 32: 269–273
|
[18] |
Yan Q, Zheng P, Tao S T, Dong J J. Fermentation process for continuous production of succinic acid in a fibrous bed bioreactor. Biochemical Engineering Journal, 2014, 91: 92–98
CrossRef
ADS
Google scholar
|
[19] |
Yen H W, Li R J, Ma T W. The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(6): 902–907
CrossRef
ADS
Google scholar
|
[20] |
Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki A I, Nychas G J, Zeng A P. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Applied Microbiology and Biotechnology, 2011, 91(1): 101–112
CrossRef
ADS
Google scholar
|
[21] |
Huang W C, Ramey D E, Yang S T. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Applied Biochemistry and Biotechnology, 2004, 113–116(1–3): 887–898
CrossRef
ADS
Google scholar
|
[22] |
Alfenore S, Molina Jouve C, Guillouet S E, Uribelarrea J L, Goma G, Benbadis L. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Applied Microbiology and Biotechnology, 2002, 60(1–2): 67–72
|
[23] |
Tan D, Xue Y S, Aibaidula G, Chen G Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 2011, 102(17): 8130–8136
CrossRef
ADS
Google scholar
|
[24] |
Nishie M, Nagao J, Sonomoto K. Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Science, 2012, 17(1): 1–16
CrossRef
ADS
Google scholar
|
[25] |
Kivistö A, Santala V, Karp M. Non-sterile process for biohydrogen and 1,3-propanediol production from raw glycerol. International Journal of Hydrogen Energy, 2013, 38(27): 11749–11755
CrossRef
ADS
Google scholar
|
[26] |
Saithong P, Nakamura T, Shima J. Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. Journal of Bioscience and Bioengineering, 2009, 108(3): 216–219
CrossRef
ADS
Google scholar
|
[27] |
Sanchez C. Bacterial evolution: phage resistance comes at a cost. Nature Reviews Microbiology, 2011, 9(6): 398–399
CrossRef
ADS
Google scholar
|
[28] |
Scanlan P D, Buckling A, Hall A R. Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage, 2015, 5(2): e1050153
CrossRef
ADS
Google scholar
|
[29] |
Xiao Y, Bowen C H, Liu D, Zhang F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nature Chemical Biology, 2016, 12(5): 339–344
CrossRef
ADS
Google scholar
|
[30] |
Smith A S, Rawlings D E. The poison-antidote stability system of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2. Molecular Microbiology, 2010, 26(5): 961–970
CrossRef
ADS
Google scholar
|
[31] |
Nilsson J, Skogman S G. Stabilization of Escherichia coli tryptophan-production vectors in continuous cultures: a comparison of three different systems. Nature Biotechnology, 1986, 4(10): 901–903
CrossRef
ADS
Google scholar
|
[32] |
Jojima T, Fujii M, Mori E, Inui M, Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Applied Microbiology and Biotechnology, 2010, 87(1): 159–165
CrossRef
ADS
Google scholar
|
[33] |
Emmerling M, Bailey J E, Sauer U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metabolic Engineering, 1999, 1(2): 117–127
CrossRef
ADS
Google scholar
|
[34] |
Katakura Y, Moukamnerd C, Harashima S, Kino-oka M. Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. Journal of Bioscience and Bioengineering, 2011, 111(3): 343–345
CrossRef
ADS
Google scholar
|
[35] |
Watanabe I, Nakamura T, Shima J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. Journal of Industrial Microbiology & Biotechnology, 2008, 35(10): 1117–1122
CrossRef
ADS
Google scholar
|
[36] |
SolomonE BOkull D. Utilization of bacteriophage to control bacterial contamination in fermentation processes. US Patent, 20090104157A1, 2009-04-23
|
[37] |
Tiquia S M, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray K S. Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan. Environmental Technology, 2007, 28(3): 297–307
CrossRef
ADS
Google scholar
|
[38] |
Chen G Q, Jiang X R. Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 2018, 50: 94–100
CrossRef
ADS
Google scholar
|
[39] |
Zhang D X, Cheryan M. Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnology Letters, 1991, 13(10): 733–738
CrossRef
ADS
Google scholar
|
[40] |
Zhang D X, Cheryan M. Starch to lactic acid in a continuous membrane bioreactor. Process Biochemistry, 1994, 29(2): 145–150
CrossRef
ADS
Google scholar
|
[41] |
Meng W, Zhang Y, Ma L, Lu C, Xu P, Ma C, Gao C. Non-sterilized fermentation of 2,3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 2022, 10: 955097
CrossRef
ADS
Google scholar
|
[42] |
Linder T. Assimilation of alternative sulfur sources in fungi. World Journal of Microbiology & Biotechnology, 2018, 34(4): 51
CrossRef
ADS
Google scholar
|
[43] |
Mandell D J, Lajoie M J, Mee M T, Takeuchi R, Kuznetsov G, Norville J E, Gregg C J, Stoddard B L, Church G M. Biocontainment of genetically modified organisms by synthetic protein design. Nature, 2015, 518(7537): 55–60
CrossRef
ADS
Google scholar
|
[44] |
Johannes T W, Woodyer R D, Zhao H. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnology and Bioengineering, 2007, 96(1): 18–26
CrossRef
ADS
Google scholar
|
[45] |
Hung C L, Liu J H, Chiu W C, Huang S W, Hwang J K, Wang W C. Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. Journal of Biological Chemistry, 2007, 282(16): 12220–12229
CrossRef
ADS
Google scholar
|
[46] |
Ou X Y, Wu X L, Peng F, Zeng Y J, Li H X, Xu P, Chen G, Guo Z W, Yang J G, Zong M H, Lou W Y. Metabolic engineering of a robust Escherichia coli strain with a dual protection system. Biotechnology and Bioengineering, 2019, 116(12): 3333–3348
CrossRef
ADS
Google scholar
|
[47] |
Brilon C, Beckmann W, Hellwig M, Knackmuss H J. Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Applied and Environmental Microbiology, 1981, 42(1): 39–43
CrossRef
ADS
Google scholar
|
[48] |
Luther M, Soeder C J. 1-Naphthalenesulfonic acid and sulfate as sulfur sources for the green ALGA Scenedesmus obliquus. Water Research, 1991, 25(3): 299–307
CrossRef
ADS
Google scholar
|
[49] |
Soeder C J, Hegewald E, Kneifel H. Green microalgae can use naphthalenesulfonic acids as sources of sulfur. Archives of Microbiology, 1987, 148(4): 260–263
CrossRef
ADS
Google scholar
|
[50] |
Dopson M, Johnson D B. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology, 2012, 14(10): 2620–2631
CrossRef
ADS
Google scholar
|
[51] |
Luther M, Soeder C J. Some naphthalenesulfonic acids as sulfur sources for the green microalga. Chemosphere, 1987, 16(7): 1565–1578
CrossRef
ADS
Google scholar
|
[52] |
Cotter P D, Ross R P, Hill C. Bacteriocins—a viable alternative to antibiotics?. Nature Reviews Microbiology, 2013, 11(2): 95–105
CrossRef
ADS
Google scholar
|
[53] |
Qureshi A S, Zhang J, da Costa Sousa L, Bao J. Antibacterial peptide secreted by Pediococcus acidilactici enables efficient cellulosic open L-lactic acid fermentation. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9254–9262
CrossRef
ADS
Google scholar
|
[54] |
Leroy F, Moreno M R F, De Vuyst L. Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. International Journal of Food Microbiology, 2003, 88(2−3): 235–240
CrossRef
ADS
Google scholar
|
[55] |
Likhacheva N A, Samsonov V V, Samsonov V V, Sineoky S P. Genetic control of the resistance to phage C1 of Escherichia coli K-12. Journal of Bacteriology, 1996, 178(17): 5309–5315
CrossRef
ADS
Google scholar
|
[56] |
SzczepankowskaA KGoreckiR KKoakowski PBardowskiJ K. Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes. London: IntechOpen, 2013, 23–72
|
[57] |
Sturino J M, Klaenhammer T R. Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 2006, 4(5): 395–404
CrossRef
ADS
Google scholar
|
[58] |
Viscardi M, Capparelli R, Di Matteo R, Carminati D, Giraffa G, Iannelli D. Selection of bacteriophage-resistant mutants of Streptococcus thermophilus. Journal of Microbiological Methods, 2003, 55(1): 109–119
CrossRef
ADS
Google scholar
|
[59] |
Mei Y J, Liu H. Selection of phage-resistant strains from Escherichia coli glyA genetic engineering bacteria. Agricultural Biotechnology, 2012, 1(2): 35–37
|
[60] |
Fineran P C, Blower T R, Foulds I J, Humphreys D P, Lilley K S, Salmond G P. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 894–899
CrossRef
ADS
Google scholar
|
[61] |
Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L. A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology, 2012, 158(Pt 12): 3063–3071
CrossRef
ADS
Google scholar
|
[62] |
Cowley L A, Low A S, Pickard D, Boinett C J, Dallman T J, Day M, Perry N, Gally D L, Parkhill J, Jenkins C, Cain A K. Transposon insertion sequencing elucidates novel gene involvement in susceptibility and resistance to phages T4 and T7 in Escherichia coli O157. mBio, 2018, 9(4): e00705–e00718
CrossRef
ADS
Google scholar
|
[63] |
Tuncer Y, Akcelik M. A protein which masks galactose receptor mediated phage susceptibility in Lactococcus lactis subsp lactis MPL56. International Journal of Food Science & Technology, 2002, 37(2): 139–144
CrossRef
ADS
Google scholar
|
[64] |
McGrath S, Fitzgerald G F, van Sinderen D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Molecular Microbiology, 2002, 43(2): 509–520
CrossRef
ADS
Google scholar
|
[65] |
Dupuis M E, Villion M, Magadan A H, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nature Communications, 2013, 4(1): 2087
CrossRef
ADS
Google scholar
|
[66] |
Sturino J M, Klaenhammer T R. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Applied and Environmental Microbiology, 2002, 68(2): 588–596
CrossRef
ADS
Google scholar
|
[67] |
Burrus V, Bontemps C, Decaris B, Guedon G. Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Applied and Environmental Microbiology, 2001, 67(4): 1522–1528
CrossRef
ADS
Google scholar
|
[68] |
Lucchini S, Sidoti J, Brussow H. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis. Virology, 2000, 275(2): 267–277
CrossRef
ADS
Google scholar
|
[69] |
Sturino J M, Klaenhammer T R. Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase. Microbiology, 2007, 153(Pt 10): 3295–3302
CrossRef
ADS
Google scholar
|
[70] |
Xue Y P, Shen Q, Zhou X T, Guo Q, Zheng Y G. Potential of the signal peptide derived from the PAS_chr3_0030 gene product for secretory expression of valuable enzymes in Pichia pastoris. Applied and Environmental Microbiology, 2021, 88(9): e0029622
|
[71] |
Reyes-Cortes R, Arguijo-Hernandez E S, Carballo-Ontiveros M A, Martinez-Penafiel E, Kameyama L. Random transposon mutagenesis for cell-envelope resistant to phage infection. Methods in Molecular Biology, 2016, 1440: 71–83
CrossRef
ADS
Google scholar
|
[72] |
Wang M S, Nitin N. Rapid detection of bacteriophages in starter culture using water-in-oil-in-water emulsion microdroplets. Applied Microbiology and Biotechnology, 2014, 98(19): 8347–8355
CrossRef
ADS
Google scholar
|
[73] |
deMello A, Rane A, Holzner G, Stavrakis S. Ultra-high-throughput multi-parametric imaging flow cytometry. EPJ Web of Conferences, 2019, 215: 10001
|
[74] |
Edgar R H, Cook J, Noel C, Minard A, Sajewski A, Fitzpatrick M, Fernandez R, Hempel J D, Kellum J A, Viator J A. Bacteriophage-mediated identification of bacteria using photoacoustic flow cytometry. Journal of Biomedical Optics, 2019, 24(11): 1–7
CrossRef
ADS
Google scholar
|
[75] |
Viscardi M, Capparelli R, Iannelli D. Rapid selection of phage-resistant mutants in Streptococcus thermophilus by immunoselection and cell sorting. International Journal of Food Microbiology, 2003, 89(2−3): 223–231
CrossRef
ADS
Google scholar
|
[76] |
Mutalik V K, Adler B A, Rishi H S, Piya D, Zhong C, Koskella B, Kutter E M, Calendar R, Novichkov P S, Price M N, Deutschbauer A M, Arkin A P. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biology, 2020, 18(10): e3000877
CrossRef
ADS
Google scholar
|
[77] |
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler D S, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biology, 2021, 19(11): e3001424
CrossRef
ADS
Google scholar
|
[78] |
Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annual Review of Food Science and Technology, 2012, 3(1): 143–162
CrossRef
ADS
Google scholar
|
[79] |
Chung D K, Chung S K, Batt C A. Antisense RNA directed against the major capsid protein of Lactococcus lactis subsp. cremoris bacteriophage 4–1 confers partial resistance to the host. Applied Microbiology and Biotechnology, 1992, 37(1): 79–83
|
[80] |
Mahony J, McGrath S, Fitzgerald G F, van Sinderen D. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Applied and Environmental Microbiology, 2008, 74(20): 6206–6215
CrossRef
ADS
Google scholar
|
[81] |
Ventura M, Canchaya C, Pridmore R D, Brussow H. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology, 2004, 320(2): 229–242
CrossRef
ADS
Google scholar
|
[82] |
Sun X, Gohler A, Heller K J, Neve H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology, 2006, 350(1): 146–157
CrossRef
ADS
Google scholar
|
[83] |
Garvey P, Hill C, Fitzgerald G F. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Applied and Environmental Microbiology, 1996, 62(2): 676–679
CrossRef
ADS
Google scholar
|
[84] |
Kim J W, Dutta V, Elhanafi D, Lee S, Osborne J A, Kathariou S. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Applied and Environmental Microbiology, 2012, 78(6): 1995–2004
CrossRef
ADS
Google scholar
|
[85] |
Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods in Molecular Biology, 2015, 1239: 197–217
CrossRef
ADS
Google scholar
|
[86] |
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278
CrossRef
ADS
Google scholar
|
[87] |
Liu L, Zhao D, Ye L, Zhan T, Xiong B, Hu M, Bi C, Zhang X. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3). Microbial Cell Factories, 2020, 19(1): 136
CrossRef
ADS
Google scholar
|
[88] |
Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nature Microbiology, 2018, 3(1): 90–98
CrossRef
ADS
Google scholar
|
[89] |
Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nature Reviews Microbiology, 2020, 18(2): 113–119
CrossRef
ADS
Google scholar
|
[90] |
Chopin M C, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Current Opinion in Microbiology, 2005, 8(4): 473–479
CrossRef
ADS
Google scholar
|
[91] |
Webster R E, Cashman J S. Abortive infection of Escherichia coli with the bacteriophage f1: cytoplasmic membrane proteins and the f1 DNA-gene 5 protein complex. Virology, 1973, 55(1): 20–38
CrossRef
ADS
Google scholar
|
[92] |
Durmaz E, Klaenhammer T R. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. Journal of Bacteriology, 2007, 189(4): 1417–1425
CrossRef
ADS
Google scholar
|
[93] |
Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, Zhang Y, Hu L, Chen S, Tang Y, Jiang S, Huang R, Li Z, Wang Y, Deng Z, Wang J, Dedon P C, Chen S, Wang L. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nature Microbiology, 2020, 5(7): 917–928
CrossRef
ADS
Google scholar
|
[94] |
Zou X, Xiao X, Mo Z, Ge Y, Jiang X, Huang R, Li M, Deng Z, Chen S, Wang L, Lee S Y. Systematic strategies for developing phage resistant Escherichia coli strains. Nature Communications, 2022, 13(1): 4491
CrossRef
ADS
Google scholar
|
[95] |
Denamur E, Matic I. Evolution of mutation rates in bacteria. Molecular Microbiology, 2006, 60(4): 820–827
CrossRef
ADS
Google scholar
|
[96] |
Umenhoffer K, Feher T, Baliko G, Ayaydin F, Posfai J, Blattner F R, Posfai G. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microbial Cell Factories, 2010, 9(1): 38
CrossRef
ADS
Google scholar
|
[97] |
Vidal L, Pinsach J, Striedner G, Caminal G, Ferrer P. Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. Journal of Biotechnology, 2008, 134(1−2): 127–136
CrossRef
ADS
Google scholar
|
[98] |
Zhang Y, Liu D, Chen Z. Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnology for Biofuels, 2017, 10(1): 299
CrossRef
ADS
Google scholar
|
[99] |
Chen Z, Geng F, Zeng A P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnology Journal, 2015, 10(2): 284–289
CrossRef
ADS
Google scholar
|
[100] |
Hagg P, de Pohl J W, Abdulkarim F, Isaksson L A. A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Journal of Biotechnology, 2004, 111(1): 17–30
CrossRef
ADS
Google scholar
|
[101] |
Porter R D, Black S, Pannuri S, Carlson A. Use of the Escherichia coli SSB gene to prevent bioreactor takeover by plasmidless cells. Biotechnology, 1990, 8(1): 47–51
|
[102] |
Gerdes K, Poulsen L K, Thisted T, Nielsen A K, Martinussen J, Andreasen P H. The hok killer gene family in gram-negative bacteria. New Biology, 1990, 2(11): 946–956
|
[103] |
Afif H, Allali N, Couturier M, Van-Melderen L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Molecular Microbiology, 2010, 41(1): 73–82
CrossRef
ADS
Google scholar
|
[104] |
Terrinoni M, Nordqvist S L, Kallgard S, Holmgren J, Lebens M. A novel nonantibiotic, lgt-based selection system for stable maintenance of expression vectors in Escherichia coli and Vibrio cholerae. Applied and Environmental Microbiology, 2018, 84(4): e02143–e02117
CrossRef
ADS
Google scholar
|
[105] |
Posfai G, Plunkett G III, Feher T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S, de Arruda M, Burland V, Harcum S W, Blattner F R. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046
CrossRef
ADS
Google scholar
|
[106] |
Wyrzykowski J, Volkert M R. The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. Journal of Bacteriology, 2003, 185(5): 1701–1704
CrossRef
ADS
Google scholar
|
[107] |
Galan J C, Turrientes M C, Baquero M R, Rodriguez-Alcayna M, Martinez-Amado J, Martinez J L, Baquero F. Mutation rate is reduced by increased dosage of mutL gene in Escherichia coli K-12. FEMS Microbiology Letters, 2007, 275(2): 263–269
CrossRef
ADS
Google scholar
|
[108] |
Csorgo B, Feher T, Timar E, Blattner F R, Posfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microbial Cell Factories, 2012, 11(1): 11
CrossRef
ADS
Google scholar
|
[109] |
Michener J K, Thodey K, Liang J C, Smolke C D. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metabolic Engineering, 2012, 14(3): 212–222
CrossRef
ADS
Google scholar
|
[110] |
Snoek T, Romero-Suarez D, Zhang J, Ambri F, Skjoedt M L, Sudarsan S, Jensen M K, Keasling J D. An orthogonal and pH-tunable sensor-selector for muconic acid biosynthesis in yeast. ACS Synthetic Biology, 2018, 7(4): 995–1003
CrossRef
ADS
Google scholar
|
[111] |
Crook N, Abatemarco J, Sun J, Wagner J M, Schmitz A, Alper H S. In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016, 7(1): 13051
CrossRef
ADS
Google scholar
|
[112] |
Zhang X, Jantama K, Moore J C, Jarboe L R, Shanmugam K T, Ingram L O. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20180–20185
CrossRef
ADS
Google scholar
|
[113] |
Hauf J, Zimmermann F K, Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26(9−10): 688–698
CrossRef
ADS
Google scholar
|
[114] |
Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Applied and Environmental Microbiology, 2012, 78(12): 4447–4457
CrossRef
ADS
Google scholar
|
[115] |
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnology and Applied Biochemistry, 2016, 63(6): 877–885
CrossRef
ADS
Google scholar
|
[116] |
Irani N, Beccaria A J, Wagner R. Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. Journal of Biotechnology, 2002, 93(3): 269–282
CrossRef
ADS
Google scholar
|
[117] |
Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresource Technology, 2011, 102(4): 3934–3940
CrossRef
ADS
Google scholar
|
[118] |
Koebmann B J, Westerhoff H V, Snoep J L, Nilsson D, Jensen P R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. Journal of Bacteriology, 2002, 184(14): 3909–3916
CrossRef
ADS
Google scholar
|
[119] |
Causey T B, Shanmugam K T, Yomano L P, Ingram L O. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(8): 2235–2240
CrossRef
ADS
Google scholar
|
[120] |
Causey T B, Zhou S, Shanmugam K T, Ingram L O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 825–832
CrossRef
ADS
Google scholar
|
[121] |
Wang J, Niyompanich S, Tai Y S, Wang J, Bai W, Mahida P, Gao T, Zhang K. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Applied and Environmental Microbiology, 2016, 82(24): 7176–7184
CrossRef
ADS
Google scholar
|
[122] |
Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Microbial Cell Factories, 2022, 21(1): 150
CrossRef
ADS
Google scholar
|
[123] |
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synthetic Biology, 2019, 8(4): 787–795
CrossRef
ADS
Google scholar
|
[124] |
Fuentes L G, Lara A R, Martinez L M, Ramirez O T, Martinez A, Bolivar F, Gosset G. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microbial Cell Factories, 2013, 12(1): 42
CrossRef
ADS
Google scholar
|
[125] |
Ikeda M. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Applied Microbiology and Biotechnology, 2012, 96(5): 1191–1200
CrossRef
ADS
Google scholar
|
[126] |
Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7): 1073–1082
CrossRef
ADS
Google scholar
|
[127] |
Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnology and Bioengineering, 2003, 83(6): 687–694
CrossRef
ADS
Google scholar
|
[128] |
Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Applied Microbiology and Biotechnology, 2012, 93(6): 2455–2462
CrossRef
ADS
Google scholar
|
[129] |
Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metabolic Engineering, 2020, 62: 198–206
CrossRef
ADS
Google scholar
|
[130] |
Michalowski A, Siemann-Herzberg M, Takors R. Escherichia coli HGT: engineered for high glucose throughput even under slowly growing or resting conditions. Metabolic Engineering, 2017, 40: 93–103
CrossRef
ADS
Google scholar
|
[131] |
Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas M A G, Xu Z. Rewiring the central metabolic pathway for high-yield L-serine production in Corynebacterium glutamicum by using glucose. Biotechnology Journal, 2019, 14(6): e1800497
CrossRef
ADS
Google scholar
|
[132] |
Zhan Y, Shi J, Xiao Y, Zhou F, Wang H, Xu H, Li Z, Yang S, Cai D, Chen S. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol. Metabolic Engineering, 2022, 70: 43–54
CrossRef
ADS
Google scholar
|
[133] |
Gu Y, Deng J, Liu Y, Li J, Shin H D, Du G, Chen J, Liu L. Rewiring the glucose transportation and central metabolic pathways for overproduction of N-acetylglucosamine in Bacillus subtilis. Biotechnology Journal, 2017, 12(10): 170020
CrossRef
ADS
Google scholar
|
[134] |
Long C P, Gonzalez J E, Feist A M, Palsson B O, Antoniewicz M R. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metabolic Engineering, 2017, 44: 100–107
CrossRef
ADS
Google scholar
|
[135] |
Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microbial Cell Factories, 2013, 12(1): 64
CrossRef
ADS
Google scholar
|
[136] |
Portnoy V A, Bezdan D, Zengler K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Current Opinion in Biotechnology, 2011, 22(4): 590–594
CrossRef
ADS
Google scholar
|
[137] |
Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Applied Microbiology and Biotechnology, 2012, 96(4): 1079–1091
CrossRef
ADS
Google scholar
|
[138] |
Guimaraes P M, Francois J, Parrou J L, Teixeira J A, Domingues L. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Applied and Environmental Microbiology, 2008, 74(6): 1748–1756
CrossRef
ADS
Google scholar
|
[139] |
Radek A, Tenhaef N, Muller M F, Brusseler C, Wiechert W, Marienhagen J, Polen T, Noack S. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresource Technology, 2017, 245(Pt B): 1377–1385
|
[140] |
McCloskey D, Xu S, Sandberg T E, Brunk E, Hefner Y, Szubin R, Feist A M, Palsson B O. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metabolic Engineering, 2018, 48: 233–242
CrossRef
ADS
Google scholar
|
[141] |
Reyes L H, Gomez J M, Kao K C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 2014, 21(1): 26–33
CrossRef
ADS
Google scholar
|
[142] |
Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194
CrossRef
ADS
Google scholar
|
[143] |
Niu F X, He X, Wu Y Q, Liu J Z. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Frontiers in Microbiology, 2018, 9: 1623
CrossRef
ADS
Google scholar
|
[144] |
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018, 49: 220–231
CrossRef
ADS
Google scholar
|
[145] |
Minliang C, Chengwei M, Lin C, Zeng A P. Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis. Metabolic Engineering Communications, 2021, 12: e00167
CrossRef
ADS
Google scholar
|
[146] |
Cheng J S, Qiao B, Yuan Y J. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Applied Microbiology and Biotechnology, 2008, 81(2): 327–338
CrossRef
ADS
Google scholar
|
[147] |
Nicolaou S A, Gaida S M, Papoutsakis E T. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12(4): 307–331
CrossRef
ADS
Google scholar
|
[148] |
Jia K, Zhang Y, Yin L. Systematic engineering of microorganisms to improve alcohol tolerance. Engineering in Life Sciences, 2010, 10(5): 422–429
CrossRef
ADS
Google scholar
|
[149] |
Calamita G, Bishai W R, Preston G M, Guggino W B, Agre P. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. Journal of Biological Chemistry, 1995, 270(49): 29063–29066
CrossRef
ADS
Google scholar
|
[150] |
Laimins L A, Rhoads D B, Epstein W. Osmotic control of kdp operon expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 464–468
CrossRef
ADS
Google scholar
|
[151] |
Sevin D C, Sauer U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nature Chemical Biology, 2014, 10(4): 266–272
CrossRef
ADS
Google scholar
|
[152] |
Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, Zhang W. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Current Microbiology, 2011, 62(2): 659–664
CrossRef
ADS
Google scholar
|
[153] |
Pan J, Wang J, Zhou Z, Yan Y, Zhang W, Lu W, Ping S, Dai Q, Yuan M, Feng B, Hou X, Zhang Y, Ruiqiang M, Liu T, Feng L, Wang L, Chen M, Lin M. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One, 2009, 4(2): e4422
CrossRef
ADS
Google scholar
|
[154] |
Stasic A J, Lee Wong A C, Kaspar C W. Osmotic and desiccation tolerance in Escherichia coli O157:H7 requires rpoS (sigma(38)). Current Microbiology, 2012, 65(6): 660–665
CrossRef
ADS
Google scholar
|
[155] |
Grothe S, Krogsrud R L, McClellan D J, Milner J L, Wood J M. Proline transport and osmotic stress response in Escherichia coli K-12. Journal of Bacteriology, 1986, 166(1): 253–259
CrossRef
ADS
Google scholar
|
[156] |
Jr M T R, Courtenay E S, Cayley D S, Guttman H J. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends in Biochemical Sciences, 1998, 23(4): 143–148
CrossRef
ADS
Google scholar
|
[157] |
Weymarn N V, Nyyssola A, Reinikainen T, Leisola M, Ojamo H. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Applied Microbiology and Biotechnology, 2000, 55(2): 214–218
CrossRef
ADS
Google scholar
|
[158] |
Aranda A, Querol A, del Olmo M. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Archives of Microbiology, 2002, 177(4): 304–312
CrossRef
ADS
Google scholar
|
[159] |
Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell & Environment, 2009, 32(8): 1046–1059
CrossRef
ADS
Google scholar
|
[160] |
Seydlova G, Halada P, Fiser R, Toman O, Ulrych A, Svobodova J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. Journal of Applied Microbiology, 2012, 112(4): 765–774
CrossRef
ADS
Google scholar
|
[161] |
Zingaro K A, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metabolic Engineering, 2013, 15: 196–205
CrossRef
ADS
Google scholar
|
[162] |
Sridhar M, Sree N K, Rao L V. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresource Technology, 2002, 83(3): 199–202
CrossRef
ADS
Google scholar
|
[163] |
Yu L, Pei X, Lei T, Wang Y, Feng Y. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 2008, 134(1−2): 154–159
CrossRef
ADS
Google scholar
|
[164] |
Zheng D Q, Wu X C, Tao X L, Wang P M, Li P, Chi X Q, Li Y D, Yan Q F, Zhao Y H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology, 2011, 102(3): 3020–3027
CrossRef
ADS
Google scholar
|
[165] |
Xiao M, Zhu X, Fan F, Xu H, Tang J, Qin Y, Ma Y, Zhang X. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids. Applied and Environmental Microbiology, 2017, 83(7): e03050–e03016
CrossRef
ADS
Google scholar
|
[166] |
Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metabolic Engineering, 2014, 24: 87–96
CrossRef
ADS
Google scholar
|
[167] |
Jensen S I, Lennen R M, Herrgard M J, Nielsen A T. Seven gene deletions in seven days: fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Scientific Reports, 2015, 5(1): 17874
CrossRef
ADS
Google scholar
|
[168] |
Lennen R M, Herrgard M J. Combinatorial strategies for improving multiple-stress resistance in industrially relevant Escherichia coli strains. Applied and Environmental Microbiology, 2014, 80(19): 6223–6242
CrossRef
ADS
Google scholar
|
[169] |
Yang L B, Dai X M, Zheng Z Y, Zhu L, Zhan X B, Lin C C. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. Journal of Microbiology and Biotechnology, 2015, 25(7): 1056–1069
CrossRef
ADS
Google scholar
|
[170] |
Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu L P, Chen G Q. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresource Technology, 2017, 244(Pt 1): 534–541
CrossRef
ADS
Google scholar
|
[171] |
Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and Environmental Microbiology, 2017, 83(22): e01614–e01617
CrossRef
ADS
Google scholar
|
[172] |
Weinstock M T, Hesek E D, Wilson C M, Gibson D G. Vibrio natriegens as a fast-growing host for molecular biology. Nature Methods, 2016, 13(10): 849–851
CrossRef
ADS
Google scholar
|
[173] |
Saha B C, Kennedy G J. Efficient itaconic acid production by Aspergillus terreus: overcoming the strong inhibitory effect of manganese. Biotechnology Progress, 2020, 36(2): e2939
CrossRef
ADS
Google scholar
|
[174] |
Tevz G, Bencina M, Legisa M. Enhancing itaconic acid production by Aspergillus terreus. Applied Microbiology and Biotechnology, 2010, 87(5): 1657–1664
CrossRef
ADS
Google scholar
|
[175] |
Voulgaris I, O’Donnell A, Harvey L M, McNeil B. Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield?. Scientific Reports, 2012, 2(1): 322
CrossRef
ADS
Google scholar
|
[176] |
Zhang J, Wu N, Ou W, Li Y, Liang Y, Peng C, Li Y, Xu Q, Tong Y. Peptide supplementation relieves stress and enhances glycolytic flux in filamentous fungi during organic acid bioproduction. Biotechnology and Bioengineering, 2022, 119(9): 2471–2481
CrossRef
ADS
Google scholar
|
[177] |
Tschirhart T, Shukla V, Kelly E E, Schultzhaus Z, NewRingeisen E, Erickson J S, Wang Z, Garcia W, Curl E, Egbert R G, Yeung E, Vora G J. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synthetic Biology, 2019, 8(9): 2069–2079
CrossRef
ADS
Google scholar
|
[178] |
Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, Luo H, Yao B, Su X. A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnology for Biofuels, 2018, 11(1): 261
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |