Reconstruction of Cu–ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol
Reconstruction of Cu–ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol
A reconstructed Cu–ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol. According to the characterization results of the fresh Cu–ZnO and reconstructed Cu–ZnO, three different forms of ZnO were suggested to be presented on the catalysts: ZnO having strong interaction with Cu species, ZnO that weakly interacted with Cu species and isolated ZnO. The first form of ZnO was believed to be beneficial to the formation of efficient active site Cu+, while the latter two forms of ZnO took the main responsibility for the deactivation of Cu–ZnO catalysts in the liquid-phase hydrogenation of diesters. The reconstruction of the Cu–ZnO catalyst by the organic acid treatment method resulted in a new Cu–ZnO catalyst with more Cu+ and less ZnO species that leads to deactivation. Furthermore, the deactivation mechanism of Cu–ZnO catalysts in liquid-phase diester hydrogenation in continuous flow system was proposed: the deposition of the polyesters on the catalysts via transesterification catalyzed by weakly interacted ZnO and isolated ZnO leads to the deactivation. These results provided meaningful instructions for designing highly efficient Cu–Zn catalysts for similar ester hydrogenation systems.
liquid phase / hydrogenation / Cu–ZnO / deactivation mechanism / 1,4-butanediol / diester
[1] |
Le S D, Nishimura S. Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid. Applied Catalysis B: Environmental, 2021, 282: 119619
CrossRef
ADS
Google scholar
|
[2] |
Shang J J, Yao G, Guo R H, Zheng W, Gu L, Lan J W. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis(2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol. Frontiers of Chemical Science and Engineering, 2018, 12(3): 457–466
CrossRef
ADS
Google scholar
|
[3] |
Zhou X M. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol). Materials Science and Engineering C, 2012, 32(8): 2459–2463
CrossRef
ADS
Google scholar
|
[4] |
Huang Z W, Barnett K J, Chada J P, Brentzel Z J, Xu Z R, Dumesic J A, Huber G W. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts. ACS Catalysis, 2017, 7(12): 8429–8440
CrossRef
ADS
Google scholar
|
[5] |
Delhomme C, Weuster-Botz D, Kühn F E. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chemistry, 2009, 11(1): 13–26
CrossRef
ADS
Google scholar
|
[6] |
Chen L F, Guo P J, Zhu L J, Qiao M H, Shen W, Xu H L, Fan K N. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Applied Catalysis A: General, 2009, 356(2): 129–136
CrossRef
ADS
Google scholar
|
[7] |
Ohlinger C, Kraushaar-Czarnetzki B. Improved processing stability in the hydrogenation of dimethyl maleate to γ-butyrolactone, 1,4-butanediol and tetrahydrofuran. Chemical Engineering Science, 2003, 58(8): 1453–1461
CrossRef
ADS
Google scholar
|
[8] |
Ying J T, Han X Q, Ma L, Lu C S, Feng F, Zhang Q F, Li X N. Effects of basic promoters on the catalytic performance of Cu/SiO2 in the hydrogenation of dimethyl maleate. Catalysts, 2019, 9(9): 704–713
CrossRef
ADS
Google scholar
|
[9] |
Müller S P, Kucher M, Ohlinger C, Kraushaar-Czarnetzki B. Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran. Journal of Catalysis, 2003, 218(2): 419–426
CrossRef
ADS
Google scholar
|
[10] |
Li S M, Wang Y, Zhang J, Wang S P, Xu Y, Zhao Y J, Ma X B. Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst. Industrial & Engineering Chemistry Research, 2015, 54(4): 1243–1250
CrossRef
ADS
Google scholar
|
[11] |
Wang W C, Wang H, Zhang J W, Kong L X, Huang H J, Liu W, Wang S P, Ma X B, Zhao Y J. Determining roles of Cu0 in the chemosynthesis of diols via condensed diester hydrogenation on Cu/SiO2 catalyst. ChemCatChem, 2020, 12(15): 3849–3852
CrossRef
ADS
Google scholar
|
[12] |
Zhao Y J, Guo Z Y, Zhang H J, Peng B, Xu Y X, Wang Y, Zhang J, Xu Y, Wang S P, Ma X B. Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica: pore size effect. Journal of Catalysis, 2018, 357: 223–237
CrossRef
ADS
Google scholar
|
[13] |
Schlander J H, Turek T. Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and γ-butyrolactone over copper/zinc oxide catalysts. Industrial & Engineering Chemistry Research, 1999, 38(4): 1264–1270
CrossRef
ADS
Google scholar
|
[14] |
Küksal A, Klemm E, Emig G. Single-stage liquid phase hydrogenation of maleic anhydride to γ-butyrolactone, 1,4-butanediol and tetrahydrofurane on Cu/ZnO/Al2O3 catalysts. Studies in Surface Science and Catalysis, 2000, 130: 2111–2116
CrossRef
ADS
Google scholar
|
[15] |
Aubrecht J, Pospelova V, Kikhtyanin O, Lhotka M, Kubička D. Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis. Catalysis Today, 2022, 397–399: 173–181
CrossRef
ADS
Google scholar
|
[16] |
Ding G Q, Zhu Y L, Zheng H Y, Zhang W, Li Y W. Study on the reaction pathway in the vapor-phase hydrogenation of biomass-derived diethyl succinate over CuO/ZnO catalyst. Catalysis Communications, 2010, 11(14): 1120–1124
CrossRef
ADS
Google scholar
|
[17] |
Besson M, Gallezot P. Deactivation of metal catalysts in liquid phase organic reactions. Catalysis Today, 2003, 81(4): 547–559
CrossRef
ADS
Google scholar
|
[18] |
Wan X Y, Ren D Z, Liu Y J, Fu J, Song Z Y, Jin F M, Huo Z B. Facile synthesis of dimethyl succinate via esterification of succinic anhydride over ZnO in methanol. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2969–2975
CrossRef
ADS
Google scholar
|
[19] |
Karanwal N, Sibi M G, Khan M K, Myint A A, Chan Ryu B, Kang J W, Kim J. Trimetallic Cu–Ni–Zn/H-ZSM-5 catalyst for the one-pot conversion of levulinic acid to high-yield 1,4-pentanediol under mild conditions in an aqueous medium. ACS Catalysis, 2021, 11(5): 2846–2864
CrossRef
ADS
Google scholar
|
[20] |
Zhang L, Mao J B, Li S M, Yin J M, Sun X D, Guo X W, Song C S, Zhou J X. Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018, 232: 1–10
CrossRef
ADS
Google scholar
|
[21] |
Zhao Y J, Zhang Y Q, Wang Y, Zhang J, Xu Y, Wang S P, Ma X B. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017, 539: 59–69
CrossRef
ADS
Google scholar
|
[22] |
Yao Y Q, Wu X Q, Gutierrez O Y, Ji J, Jin P, Wang S P, Xu Y, Zhao Y J, Wang S P, Ma X B, Lercher J A. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts. Applied Catalysis B: Environmental, 2020, 267: 118698
CrossRef
ADS
Google scholar
|
[23] |
Zhang B, Chen Y, Li J W, Pippel E, Yang H M, Gao Z, Qin Y. High efficiency Cu–ZnO hydrogenation catalyst: the tailoring of Cu–ZnO interface sites by molecular layer deposition. ACS Catalysis, 2015, 5(9): 5567–5573
CrossRef
ADS
Google scholar
|
[24] |
Dong X Q, Lei J W, Chen Y F, Jiang H X, Zhang M H. Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458
CrossRef
ADS
Google scholar
|
[25] |
Zhang J W, Kong L X, Chen Y, Huang H J, Zhang H H, Yao Y Q, Xu Y X, Xu Y, Wang S P, Ma X B, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678
CrossRef
ADS
Google scholar
|
[26] |
Westen T V, Groot R D. Effect of temperature cycling on ostwald ripening. Crystal Growth & Design, 2018, 18(9): 4952–4962
CrossRef
ADS
Google scholar
|
[27] |
Yan S, Salley S O, Simon Ng K Y. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Applied Catalysis A: General, 2009, 353(2): 203–212
CrossRef
ADS
Google scholar
|
[28] |
Yan S, Mohan S, DiMaggio C, Kim M, Ng K Y S, Salley S O. Long term activity of modified ZnO nanoparticles for transesterification. Fuel, 2010, 89(10): 2844–2852
CrossRef
ADS
Google scholar
|
[29] |
Istadi I, Prasetyo S A, Nugroho T S. Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Procedia Environmental Sciences, 2015, 23: 394–399
CrossRef
ADS
Google scholar
|
[30] |
Babu N S, Sree R, Prasad P S S, Lingaiah N. Room temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 2008, 22(3): 1965–1971
CrossRef
ADS
Google scholar
|
[31] |
Wu X M, Zhu F F, Qi J J, Zhao L Y, Yan F W, Li C H. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO. Frontiers of Environmental Science & Engineering, 2017, 11(2): 3–13
CrossRef
ADS
Google scholar
|
[32] |
Kikhtyanin O, Aubrecht J, Pospelova V, Kubička D. On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis. Applied Catalysis A: General, 2020, 606: 117825
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |