Electronic band structure from first-principles Green’s function approach: theory and implementations

Hong JIANG

PDF(280 KB)
PDF(280 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 253-268. DOI: 10.1007/s11458-011-0261-6
REVIEW ARTICLE
REVIEW ARTICLE

Electronic band structure from first-principles Green’s function approach: theory and implementations

Author information +
History +

Abstract

Electronic band structure is one of the most important intrinsic properties of a material, and is in particular crucial in electronic, photo-electronic and photo- catalytic applications. Kohn-Sham Density-functional theory (KS-DFT) within currently available local or semi-local approximations to the exchange-correlation energy functional is problematic for the description of electronic band structure. Many-body perturbation theory based on Green’s function (GF) provides a rigorous framework to describe excited-state properties of materials. The central ingredient of the GF-based many-body perturbation theory is the exchange- correlation self-energy, which accounts for all non-classical electron-electron interaction effects beyond the Hartree theory, and formally can be obtained by solving a set of complicated integro-differential equations, named Hedin’s equations. The GW approximation, in which the self-energy is simply a product of Green’s function and the screened Coulomb interaction (W), is currently the most accurate first-principles approach to describe electronic band structure properties of extended systems. Compared to KS-DFT, the computational efforts required for GW calculations are much larger. Various numerical techniques or approximations have been developed to apply GW for realistic systems. In this paper, we give an overview of the theory of first-principles Green’s function approach in the GW approximation and review the state of the art for the implementation of GW in different representations and with different treatment of the frequency dependence. It is hoped that further methodological developments will be inspired by this work so that the approach can be applied to more complicated and scientifically more interesting systems.

Keywords

electronic band structure / many-body perturbation theory / GW approximation

Cite this article

Download citation ▾
Hong JIANG. Electronic band structure from first-principles Green’s function approach: theory and implementations. Front Chem Chin, 2011, 6(4): 253‒268 https://doi.org/10.1007/s11458-011-0261-6

References

[1]
Hüfner, S., Photoelectron Spectroscopy: Prinples and Applications 3rd ed. Berlin: Springer, 2003
[2]
Onida, G.; Rubio, A., Rev. Mod. Phys. 2002, 74, 601-659
CrossRef Google scholar
[3]
Yu, P. Y.; Cardona, M., Fundamentals of semiconductors: physics and materials properties 3rd ed. Berlin: Springer, 2001
[4]
Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and MoleculesNew York: Oxford University Press, 1989
[5]
Dreizler, R. M.; Gross, E. K. U., Density Functional Theory: An Approach to the Quantum Many-Body ProblemBerlin: Springer-Verlag, 1990
[6]
Martin, R. M., Electronic Structure: Basic Theory and Practical Methods, Cambridge UK: Cambridge University Press, 2004
[7]
Aryasetiawan, F., in Anisimov, V. I., ed., Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation Gordon and Breach Science Publishers, 2000 (1)
[8]
Fetter, A. L.; Walecka, J. D., Quantum theory of many-particle systems McGraw-Hill, New York, 1971
[9]
Hedin, L.; Lundqvist, B. I., Solid State Phys. 1969, 23, 1-181
CrossRef Google scholar
[10]
Hedin, L., Phys. Rev.1965, 139, A796-A823
CrossRef Google scholar
[11]
Aryasetiawan, F.; Gunnarsson, O., Rep. Prog. Phys. 1998, 61, 237-312
CrossRef Google scholar
[12]
Hybertsen, M. S.; Louie, S. G., Phys. Rev. B1986, 34, 5390-5413
CrossRef Google scholar
[13]
Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B1988, 37, 10159-10175
CrossRef Google scholar
[14]
Faleev, S. V.; van Schilfgaarde, M.; Kotani, T., Phys. Rev. Lett.2004, 93, 126406
CrossRef Pubmed Google scholar
[15]
Bruneval, F.; Vast, N.; Reining, L., Phys. Rev. B2006, 74, 045102
CrossRef Google scholar
[16]
Shishkin, M.; Marsman, M.; Kresse, G., Phys. Rev. Lett.2007, 99, 246403
CrossRef Pubmed Google scholar
[17]
Bruneval, F.; Gonze, X., Phys. Rev. B2008, 78, 085125
CrossRef Google scholar
[18]
Hamann, D. R.; Vanderbilt, D., Phys. Rev. B2009, 79, 045109
CrossRef Google scholar
[19]
Berger, J. A.; Reining, L.; Sottile, F., Phys. Rev. B2010, 82, 2010
[20]
Umari, P.; Stenuit, G.; Baroni, S., Phys. Rev. B2010, 81, 115104
CrossRef Google scholar
[21]
Samsonidze, G.; Jain, M.; Deslippe, J.; Cohen, M. L.; Louie, S. G., Phys. Rev. Lett.2011, 107, 186404
CrossRef Pubmed Google scholar
[22]
Jiang, H.; Gomez-Abal, R.; Rinke, P.; Scheffler, M., Phys. Rev. B2010, 81, 085119
CrossRef Google scholar
[23]
Inkson, J. C., Many-body theory of solids: An IntroductionNew York: Plenum, 1983
[24]
Jiang, H.Acta., Acta.Phys. Chim. Sin2010, 26, 1017
[25]
Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists ed. 5th ed. Academic Press, 2001
[26]
Linderberg, J., Öhrn Propagators in Quantum Chemistry 2nd ed. John Wiley & Sons, 2004
[27]
Zakrzewski, V. G.; Dolgounitcheva, O.; Zakjevskii, A. V.; Ortiz, J. V., Ann. Rep. Comput. Chem2010, 6, 79-94
CrossRef Google scholar
[28]
Shishkin, M.; Kresse, G., Phys. Rev. B2007, 75, 235102
CrossRef Google scholar
[29]
Baldereschi, A.; Tosatti, E., Solid State Commun. 1979, 29, 131-135
CrossRef Google scholar
[30]
Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B1987, 36, 6497-6500
CrossRef Google scholar
[31]
Rojas, H. N.; Godby, R. W.; Needs, R. J., Phys. Rev. Lett.1995, 74, 1827-1830
CrossRef Pubmed Google scholar
[32]
Rieger, M. M.; Steinbeck, L.; White, I. D.; Rojas, H. N.; Godby, R. W., Comput. Phys. Commun.1999, 117, 211-228
CrossRef Google scholar
[33]
Rohlfing, M.; Krüger, P.; Pollmann, J., Phys. Rev. Lett.1995, 75, 3489-3492
CrossRef Pubmed Google scholar
[34]
Blase, X.; Attaccalite, C.; Olevano, V.prb, 2011, 83: 115103
[35]
Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular Electronic-Structure Theory John Wiley & Sons, 2000
[36]
Foerster, D.; Koval, P.; Sanchez-Portal, D. J., Chem. Phys.2011, 135, 074105
[37]
Gómez-Abal, R.; Li, X.; Scheffler, M.; Ambrosch-Draxl, C., Phys. Rev. Lett.2008, 101, 106404
CrossRef Pubmed Google scholar
[38]
Li, X., All-Electron G0W0 code based on FP-(L)APW+lo and applications Ph.D. thesis Free University of Berlin, 2008
[39]
Li, G. L.; Yin, Z., Phys. Chem. Phys. Chem2011, 13, 2824
[40]
Aryasetiawan, F., Phys. Rev. B1992, 46, 13051-13064
CrossRef Google scholar
[41]
Kotani, T.; van Schilfgaarde, M., Solid State Commun.2002, 121, 461-465
CrossRef Google scholar
[42]
Friedrich, C.; Schindlmayr, A.; Blügel, S.; Kotani, T., Phys. Rev. B2006, 74, 045104
CrossRef Google scholar
[43]
Friedrich, C.; Blügel, S.; Schindlmayr, A.prb, 2010, 81: 125102
[44]
Aryasetiawan, F.; Gunnarsson, O., Phys. Rev. B1994, 49, 16214-16222
CrossRef Google scholar
[45]
Andersen, O. K., Phys. Rev. B1975, 12, 3060-3083
CrossRef Google scholar
[46]
Aulbur, W. G.; Jönsson, L.; Wilkins, J. W., Solid State Phys.2000, 54, 1-218
CrossRef Google scholar
[47]
Gatti, M.; Bruneval, F.; Olevano, V.; Reining, L., Phys. Rev. Lett.2007, 99, 266402
CrossRef Pubmed Google scholar
[48]
Vidal, J.; Botti, S.; Olsson, P.; Guillemoles, J.-F.; Reining, L. prl, 2010, 104: 056401
[49]
Vidal, J.; Trani, F.; Bruneval, F.; Marques, M. A. L.; Botti, S.prl, 2010, 104: 136401
[50]
Botti, S.; Kammerlander, D.; Marques, M. A. L.apl, 2011, 98: 241915
[51]
Gygi, F.; Baldereschi, A., Phys. Rev. Lett.1989, 62, 2160-2163
CrossRef Pubmed Google scholar
[52]
Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. Lett.1995, 74, 2323-2326
CrossRef Pubmed Google scholar
[53]
Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. B1997, 55, 13494-13502
CrossRef Google scholar
[54]
Continenza, A.; Massidda, S.; Posternak, M., Phys. Rev. B1999, 60, 15699-15704
CrossRef Google scholar
[55]
Johnson, D. J., Phys. Rev. B1974, 9, 4475-4484
CrossRef Google scholar
[56]
Godby, R. W.; Needs, R. J.prl, 1989, 62: 1169
[57]
von der Linden, W.; Horsch, P., Phys. Rev. B1988, 37, 8351-8362
CrossRef Google scholar
[58]
Engel, G. E.; Farid, B., Phys. Rev. B1993, 47, 15931-15934
CrossRef Google scholar
[59]
Jiang, H.; Engel, E. J., Chem. Phys.2007, 127, 184108
[60]
Shishkin, M.; Kresse, G., Phys. Rev. B2006, 74, 035101
CrossRef Google scholar
[61]
Szabo, A.; Ostlund, N. S., Modern Quantum ChemistryNew York: McGraw-Hill, 1989
[62]
Rinke, P.; Qteish, A.; Neugebauer, J.; Freysoldt, C.; Scheffler, M., N. J. Phys.2005, 7, 126
CrossRef Google scholar
[63]
Rinke, P.; Qteish, A.; Neugebauer, J.; Scheffler, M.phys. stat. sol. (b), 2008, 245: 929
[64]
Miyake, T.; Zhang, P.; Cohen, M. L.; Louie, S. G., Phys. Rev. B2006, 74, 245213
CrossRef Google scholar
[65]
Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. Lett.2009, 102, 126403
CrossRef Pubmed Google scholar
[66]
Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. B2010, 82, 045108
CrossRef Google scholar
[67]
Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F., Phys. Rev. B2008, 77, 184408
CrossRef Google scholar
[68]
Caramella, L.; Onida, G.; Finocchi, F.; Reining, L.; Sottile, F., Phys. Rev. B2007, 75, 205405
CrossRef Google scholar
[69]
Schütz, M.; Hetzer, G.; Werner, H. J., J. Chem. Phys.1999, 111, 5691
CrossRef Google scholar
[70]
Ayala, P. Y.; Scuseria, G. E. J., Chem. Phys.1999, 110, 3660
[71]
Chiodo, L.; Garcia-Lastra, J. M.; Iacomino, A.; Ossicini, S.; Zhao, J.; Petek, H.; Rubio, A.prb, 2010, 82: 045207
[72]
Kang, W.; Hybertsen, M. S., Phys. Rev. B2010, 82, 085203
CrossRef Google scholar
[73]
Wang, H.; Wu, F.; Jiang, H. J., PhysChemComm2011, 115, 16180

Acknowledgements

The author acknowledges Dr. Ricardo I. Gomez-Abal, Dr. Patrick Rinke and Prof. Matthias Scheffler for the fruitful collaborations during the stay at Fritz-Haber Insitut-der-MPG as a postdoc. The author also thanks Prof. Claudia Ambrosch-Draxel, Prof. E. K. U. Gross, Dr. Xinguo Ren and Dr. Xinzheng Li for helpful discussions. This work was partly supported by NSFC (Project No. 20973009).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(280 KB)

Accesses

Citations

Detail

Sections
Recommended

/