Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds

Yinxi YU , Haobin WANG

Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 280 -286.

PDF (247KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 280 -286. DOI: 10.1007/s11458-011-0257-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds

Author information +
History +
PDF (247KB)

Abstract

The constrained density functional theory (CDFT) was used to investigate the topological effects on intramolecular electron transfer processes that have been reported in previous experimental work [Inorg. Chem., 1997, 36 (22), pp 5037-5049]. The computation mainly focused on three isomers of diferrocenylbenzenes (ortho, para, and meta) and 5-substituted derivatives of m-diferrocencylbenzenes with R= NH2, Cl, CH3, CN, NO2, N(CH3)33+, and N2+. The influence of a third group R’ (R’ = NH2 and N2+) was introduced to the ortho and para isomers. The calculations were compared with the experimental results. The relation between the substituted functional groups and the effectiveness of intramolecular electron transfer was discussed on the basis of CDFT computational results.

Cite this article

Download citation ▾
Yinxi YU, Haobin WANG. Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds. Front. Chem. China, 2011, 6(4): 280-286 DOI:10.1007/s11458-011-0257-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hush, N. S., Coord. Chem. Rev.1985, 64, 135-157

[2]

Prassides, K., Mixed valency systems: applications in chemistry, physics, and biology; Kluwer Academic Publishers: Dordrecht; Boston, 1991

[3]

Crutchley, R. J., Adv. Inorg. Chem.1994, 41, 273-325

[4]

Astruc, D., Electron transfer and radical processes in transition-metal chemistry; VCH: New York, N.Y., 1995

[5]

Ward, M. D., Chem. Soc. Rev.1995, 24, 121-134

[6]

Allen, G. C.; Hush, N. S., In Progress in Inorganic Chemistry; Cotton, F. A., Ed. 2007, p 357-389

[7]

Ceccon, A.; Santi, S.; Orian, L.; Bisello, A., Coord. Chem. Rev.2004, 248, 683-724

[8]

Shu, P.; Bechgaard, K.; Cowan, D. O., J. Org. Chem.1976, 41, 1849-1852

[9]

Engtrakul, C.; Sita, L. R., Nano Lett.2001, 1, 541-549

[10]

Low, P. J.; Roberts, R. L.; Cordiner, R. L.; Hartl, F., J. Solid State Electrochem.2005, 9, 717-731

[11]

Robin, M. B.; Day, P., Advances in Inorganic Chemistry and Radiochemistry1967, 10, 247-422

[12]

Cowan, D. O.; Levanda, C.; Park, J.; Kaufman, F., Acc. Chem. Res.1973, 6, 1-7

[13]

Day, P.; Hush, N. S.; Clark, R. J. H.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences2008, 366, 5-14

[14]

Gamelin, D. R.; Bominaar, E. L.; Mathoniere, C.; Kirk, M. L.; Wieghardt, K.; Girerd, J. J.; Solomon, E. I., Inorg. Chem.1996, 35, 4323-4335

[15]

Williams, R. D.; Petrov, V. I.; Lu, H. P.; Hupp, J. T., J. Phys. Chem. A1997, 101, 8070-8076

[16]

Brunschwig, B. S.; Creutz, C.; Sutin, N., Chem. Soc. Rev.2002, 31, 168-184

[17]

Sun, H.; Steeb, J.; Kaifer, A. E., J. Am. Chem. Soc.2006, 128, 2820-2821

[18]

Concepcion, J. J.; Dattelbaum, D. M.; Meyer, T. J.; Rocha, R. C.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences2008, 366, 163-175

[19]

Osella, D.; Gobetto, R.; Nervi, C.; Ravera, M.; D'Amato, R.; Russo, M. V., Inorg. Chem. Commun.1998, 1, 239-245

[20]

Burgess, M. R.; Jing, S.; Morley, C. P., J. Organomet. Chem.2006, 691, 3484-3489

[21]

Wedeking, K.; Mu, Z. C.; Kehr, G.; Sierra, J. C.; Lichtenfeld, C. M.; Grimme, S.; Erker, G.; Frohlich, R.; Chi, L. F.; Wang, W. C.; Zhong, D. Y.; Fuchs, H., Chemistry-a European Journal2006, 12, 1618-1628

[22]

Ferguson, G.; Glidewell, C.; Opromolla, G.; Zakaria, C. M.; Zanello, P., J. Organomet. Chem.1996, 517, 183-190

[23]

Arisandy, C.; Fullam, E.; Barlow, S., J. Organomet. Chem.2006, 691, 3285-3292

[24]

Morrison, W. H.; Krogsrud, S.; Hendrick, D. N., Inorg. Chem.1973, 12, 1998-2004

[25]

Nishihara, H., Bull. Chem. Soc. Jpn.2001, 74, 19-29

[26]

Ding, F. Z.; Wang, H. B.; Wu, Q.; Van Voorhis, T.; Chen, S. W.; Konopelski, J. P., J. Phys. Chem. A2010, 114, 6039-6046

[27]

Patoux, C.; Coudret, C.; Launay, J. P.; Joachim, C.; Gourdon, A., Inorg. Chem.1997, 36, 5037-5049

[28]

Dederichs, P. H.; Blugel, S.; Zeller, R.; Akai, H., Phys. Rev. Lett.1984, 53, 2512-2515

[29]

Wu, Q.; Van Voorhis, T., Phys. Rev. A2005, 72, 024502

[30]

Wu, Q.; Van Voorhis, T., J. Chem. Theory Comput.2006, 2, 765-774

[31]

Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M., Phys. Rev. Lett.2005, 94, 036104-1

[32]

Behler, J.; Delley, B.; Reuter, K.; Scheffler, M., Phys. Rev. B2007, 75, 115409-1

[33]

Schmidt, J. R.; Shenvi, N.; Tully, J. C., J. Chem. Phys.2008, 129, 114110-114111

[34]

Oberhofer, H.; Blumberger, J., J. Chem. Phys.2009, 131, 064101-1

[35]

Wu, Q.; Van Voorhis, T., J. Chem. Phys.2006, 125, 164105

[36]

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, Inc.: Wallingford, CT2004

[37]

Bylaska, E. J.; de Jong, W. A.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; Wang, D.; Aprà E.; Windus, T. L.; Hirata, S.; Hackler, M. T.; Zhao, Y.; Fan, P.D.; Harrison, R. J.; Dupuis, M.; Smith, D. M. A.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Auer, A. A.; Nooijen, M.; Brown, E.; Cisneros, G.; Fann, G. I.; Früchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.; Zhang, Z., Pacific Northwest National Laboratory, Richland, Washington 99352-0999 USA2006

[38]

Becke, A. D., J. Chem. Phys.1993, 98, 5648-5652

[39]

Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B1988, 37, 785-789

[40]

Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A., J. Chem. Phys.1982, 77, 3654-3665

[41]

Klamt, A.; Schuurmann, G., Journal of the Chemical Society-Perkin Transactions1993, 2, 799-805

[42]

Lowdin, P. O., J. Chem. Phys.1950, 18, 365-375

[43]

Mayer, I., Int. J. Quantum Chem.2002, 90, 63-65

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (247KB)

722

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/