Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds

Yinxi YU, Haobin WANG

PDF(247 KB)
PDF(247 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 280-286. DOI: 10.1007/s11458-011-0257-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds

Author information +
History +

Abstract

The constrained density functional theory (CDFT) was used to investigate the topological effects on intramolecular electron transfer processes that have been reported in previous experimental work [Inorg. Chem., 1997, 36 (22), pp 5037-5049]. The computation mainly focused on three isomers of diferrocenylbenzenes (ortho, para, and meta) and 5-substituted derivatives of m-diferrocencylbenzenes with R= NH2, Cl, CH3, CN, NO2, N(CH3)33+, and N2+. The influence of a third group R’ (R’ = NH2 and N2+) was introduced to the ortho and para isomers. The calculations were compared with the experimental results. The relation between the substituted functional groups and the effectiveness of intramolecular electron transfer was discussed on the basis of CDFT computational results.

Cite this article

Download citation ▾
Yinxi YU, Haobin WANG. Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds. Front Chem Chin, 2011, 6(4): 280‒286 https://doi.org/10.1007/s11458-011-0257-2

References

[1]
Hush, N. S., Coord. Chem. Rev.1985, 64, 135-157
CrossRef Google scholar
[2]
Prassides, K., Mixed valency systems: applications in chemistry, physics, and biology; Kluwer Academic Publishers: Dordrecht; Boston, 1991
[3]
Crutchley, R. J., Adv. Inorg. Chem.1994, 41, 273-325
CrossRef Google scholar
[4]
Astruc, D., Electron transfer and radical processes in transition-metal chemistry; VCH: New York, N.Y., 1995
[5]
Ward, M. D., Chem. Soc. Rev.1995, 24, 121-134
CrossRef Google scholar
[6]
Allen, G. C.; Hush, N. S., In Progress in Inorganic Chemistry; Cotton, F. A., Ed. 2007, p 357-389
[7]
Ceccon, A.; Santi, S.; Orian, L.; Bisello, A., Coord. Chem. Rev.2004, 248, 683-724
CrossRef Google scholar
[8]
Shu, P.; Bechgaard, K.; Cowan, D. O., J. Org. Chem.1976, 41, 1849-1852
CrossRef Google scholar
[9]
Engtrakul, C.; Sita, L. R., Nano Lett.2001, 1, 541-549
CrossRef Google scholar
[10]
Low, P. J.; Roberts, R. L.; Cordiner, R. L.; Hartl, F., J. Solid State Electrochem.2005, 9, 717-731
CrossRef Google scholar
[11]
Robin, M. B.; Day, P., Advances in Inorganic Chemistry and Radiochemistry1967, 10, 247-422
CrossRef Google scholar
[12]
Cowan, D. O.; Levanda, C.; Park, J.; Kaufman, F., Acc. Chem. Res.1973, 6, 1-7
CrossRef Google scholar
[13]
Day, P.; Hush, N. S.; Clark, R. J. H.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences2008, 366, 5-14
[14]
Gamelin, D. R.; Bominaar, E. L.; Mathoniere, C.; Kirk, M. L.; Wieghardt, K.; Girerd, J. J.; Solomon, E. I., Inorg. Chem.1996, 35, 4323-4335
CrossRef Google scholar
[15]
Williams, R. D.; Petrov, V. I.; Lu, H. P.; Hupp, J. T., J. Phys. Chem. A1997, 101, 8070-8076
CrossRef Google scholar
[16]
Brunschwig, B. S.; Creutz, C.; Sutin, N., Chem. Soc. Rev.2002, 31, 168-184
CrossRef Google scholar
[17]
Sun, H.; Steeb, J.; Kaifer, A. E., J. Am. Chem. Soc.2006, 128, 2820-2821
CrossRef Google scholar
[18]
Concepcion, J. J.; Dattelbaum, D. M.; Meyer, T. J.; Rocha, R. C.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences2008, 366, 163-175
[19]
Osella, D.; Gobetto, R.; Nervi, C.; Ravera, M.; D'Amato, R.; Russo, M. V., Inorg. Chem. Commun.1998, 1, 239-245
CrossRef Google scholar
[20]
Burgess, M. R.; Jing, S.; Morley, C. P., J. Organomet. Chem.2006, 691, 3484-3489
CrossRef Google scholar
[21]
Wedeking, K.; Mu, Z. C.; Kehr, G.; Sierra, J. C.; Lichtenfeld, C. M.; Grimme, S.; Erker, G.; Frohlich, R.; Chi, L. F.; Wang, W. C.; Zhong, D. Y.; Fuchs, H., Chemistry-a European Journal2006, 12, 1618-1628
CrossRef Google scholar
[22]
Ferguson, G.; Glidewell, C.; Opromolla, G.; Zakaria, C. M.; Zanello, P., J. Organomet. Chem.1996, 517, 183-190
CrossRef Google scholar
[23]
Arisandy, C.; Fullam, E.; Barlow, S., J. Organomet. Chem.2006, 691, 3285-3292
CrossRef Google scholar
[24]
Morrison, W. H.; Krogsrud, S.; Hendrick, D. N., Inorg. Chem.1973, 12, 1998-2004
CrossRef Google scholar
[25]
Nishihara, H., Bull. Chem. Soc. Jpn.2001, 74, 19-29
CrossRef Google scholar
[26]
Ding, F. Z.; Wang, H. B.; Wu, Q.; Van Voorhis, T.; Chen, S. W.; Konopelski, J. P., J. Phys. Chem. A2010, 114, 6039-6046
CrossRef Google scholar
[27]
Patoux, C.; Coudret, C.; Launay, J. P.; Joachim, C.; Gourdon, A., Inorg. Chem.1997, 36, 5037-5049
CrossRef Google scholar
[28]
Dederichs, P. H.; Blugel, S.; Zeller, R.; Akai, H., Phys. Rev. Lett.1984, 53, 2512-2515
CrossRef Google scholar
[29]
Wu, Q.; Van Voorhis, T., Phys. Rev. A2005, 72, 024502
CrossRef Google scholar
[30]
Wu, Q.; Van Voorhis, T., J. Chem. Theory Comput.2006, 2, 765-774
CrossRef Google scholar
[31]
Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M., Phys. Rev. Lett.2005, 94, 036104-1
CrossRef Google scholar
[32]
Behler, J.; Delley, B.; Reuter, K.; Scheffler, M., Phys. Rev. B2007, 75, 115409-1
CrossRef Google scholar
[33]
Schmidt, J. R.; Shenvi, N.; Tully, J. C., J. Chem. Phys.2008, 129, 114110-114111
CrossRef Google scholar
[34]
Oberhofer, H.; Blumberger, J., J. Chem. Phys.2009, 131, 064101-1
CrossRef Google scholar
[35]
Wu, Q.; Van Voorhis, T., J. Chem. Phys.2006, 125, 164105
CrossRef Google scholar
[36]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, Inc.: Wallingford, CT2004
[37]
Bylaska, E. J.; de Jong, W. A.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; Wang, D.; Aprà, E.; Windus, T. L.; Hirata, S.; Hackler, M. T.; Zhao, Y.; Fan, P.D.; Harrison, R. J.; Dupuis, M.; Smith, D. M. A.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Auer, A. A.; Nooijen, M.; Brown, E.; Cisneros, G.; Fann, G. I.; Früchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.; Zhang, Z., Pacific Northwest National Laboratory, Richland, Washington 99352-0999 USA2006
[38]
Becke, A. D., J. Chem. Phys.1993, 98, 5648-5652
CrossRef Google scholar
[39]
Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B1988, 37, 785-789
CrossRef Google scholar
[40]
Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A., J. Chem. Phys.1982, 77, 3654-3665
CrossRef Google scholar
[41]
Klamt, A.; Schuurmann, G., Journal of the Chemical Society-Perkin Transactions1993, 2, 799-805
[42]
Lowdin, P. O., J. Chem. Phys.1950, 18, 365-375
CrossRef Google scholar
[43]
Mayer, I., Int. J. Quantum Chem.2002, 90, 63-65
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation (No. CHE-1012479). The computations were performed using resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(247 KB)

Accesses

Citations

Detail

Sections
Recommended

/