Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection

Xiaoqi FU , Shuang WANG , Qian ZHAO , Tingshun JIANG , Hengbo YIN

Front. Chem. China ›› 2011, Vol. 6 ›› Issue (3) : 206 -212.

PDF (432KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (3) : 206 -212. DOI: 10.1007/s11458-011-0249-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection

Author information +
History +
PDF (432KB)

Abstract

A new kind of nonmetallic nanosensors based on surface-enhanced Raman spectroscopy (SERS) have been successfully prepared by the assembly of α-Fe2O3 nanoparticles (NPs) onto clean quartz surface via the cross-linker of hexamethylene diisocyanate (HDI). The resultant substrates have been characterized by electron micrographs, which show that the α-Fe2O3 NPs distribute on the modified surface uniformly with a monolayer or sub-monolayer structure. 4-mercaptopyridine (4-Mpy) and 2-mercaptobenzothiazole (2-MBT) molecules have been used as SERS probes to estimate the detection efficiency of the α-Fe2O3 thin films. The SERS experiments show that it is possible to record high quality SERS spectra from probe molecules on the α-Fe2O3 thin films at sub-micromolar (< 10-6 mol/L) concentration. These results indicate that the highly ordered, uniformly roughed, highly sensitive and low-cost α-Fe2O3 thin films are excellent candidates for nonmetallic SERS-active nanosensors.

Keywords

nanosensors / SERS / α-Fe2O3 nanoparticles / thin film

Cite this article

Download citation ▾
Xiaoqi FU, Shuang WANG, Qian ZHAO, Tingshun JIANG, Hengbo YIN. Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection. Front. Chem. China, 2011, 6(3): 206-212 DOI:10.1007/s11458-011-0249-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang, Y.; Li, D.; Li, P.; Wang, W.; Ren, W.; Dong, S.; Wang, E., J. Phys. Chem. C2007, 111, 16833-16839

[2]

Sylvia, J. M.; Janni, J. A.; Klein, J. D.; Spencer, K. M., Anal. Chem.2000, 72, 5834-5840

[3]

Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Talanta2005, 67, 438-448

[4]

Lucotti, A.; Pesapane, A.; Zerbi, G., Appl. Spectrosc.2007, 61, 260-268

[5]

Wachter, E. A.; Storey, J. M. E.; Sharp, S. L.; Carron, K. T.; Jiang, Y., Appl. Spectrosc.1995, 49, 193-199

[6]

Grabar, K. C.; Freeman, R. C.; Hommer, M. B.; Natan, M. J., Anal. Chem.1995, 67, 735-743

[7]

Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys.2004, 120, 15

[8]

Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science1995, 267, 1629-1632

[9]

Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M., J. Phys. Chem.1995, 99, 9466-9471

[10]

Ulman, A., Chem. Rev.1996, 96, 1533-1554

[11]

Murty, K. V. G. K.; Venkataramanan, M.; Pradeep, T., Langmuir1998, 14, 5446-5456

[12]

Felidj, N.; Truong, S. L.; Aubard, J.; Levi, G.; Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys.2004, 120, 7141

[13]

Tantra, R.; Brown, R. J. C.; Milton, M. J. T.; Gohil, D., Appl. Spectrosc.2008, 62, 992-1000

[14]

Wang, Y.; Gan, L.; Chen, H.; Dong, S.; Wang, J., J. Phys. Chem. B2006, 110, 20418-20425

[15]

Zou, S.; Weaver, M. J., Anal. Chem.1998, 70, 2387-2395

[16]

Brankovic, S. R.; Wang, J. X.; Adzic, R. R., Surf. Sci.2001, 474, L173-L179

[17]

Wang, Z. L., Adv. Mater. (Deerfield Beach Fla.)2003, 15, 432-436

[18]

Liu, A., Biosens. Bioelectron.2008, 24, 167-177

[19]

Yamada, H.; Yamamoto, Y., Surf. Sci.1983, 134, 71-90

[20]

Loo, B. H., J. Electroanal. Chem.1982, 136, 209-213

[21]

Kudelski, A.; Grochala, W.; Janik-Czachor, M.; Bukowska, J.; Szummer, A.; Dolata, M., J. Raman Spectrosc.1998, 29, 431-435

[22]

Fu, X.; Pan, Y.; Wang, X.; Lombardi, J. R., J. Chem. Phys.2011, 134, 024707

[23]

Liu, Y. C.; Yu, C. C.; Wang, C. C.; Juang, L. C., Chem. Phys. Lett.2006, 420, 245-249

[24]

Wang, X.; Chen, X.; Ma, X.; Zheng, H.; Ji, M.; Zhang, Z., Chem. Phys. Lett.2004, 384, 391-393

[25]

Matijevic, E.; Scheiner, P., J. Colloid Interface Sci.1978, 63, 509-524

[26]

Fu, X. Q.; Bei, F. L.; Wang, X.; Yang, X. J.; Lu, L. D., J. Raman Spectrosc.2009, 40, 1290-1295

[27]

Su, X.; Zhang, J.; Sun, L.; Koo, T. W.; Chan, S.; Sundararajan, N.; Yamakawa, M.; Berlin, A. A., Nano Lett.2005, 5, 49-54

[28]

Lee, S. J.; Morrill, A. R.; Moskovits, M., J. Am. Chem. Soc.2006, 128, 2200-2201

[29]

Wang, Y.; Zhang, J.; Jia, H.; Li, M.; Zeng, J.; Yang, B.; Zhao, B.; Xu, W.; Lombardi, J. R., J. Phys. Chem. C2008, 112, 996-1000

[30]

Lombardi, J. R.; Birke, R. L. J., PhysChemComm2008, 112, 5605

[31]

Finkelstein-Shapiro, D.; Tarakeshwar, P.; Rajh, T.; Mujica, V., J. Phys. Chem. B2010, 114, 14642-14645

[32]

Baldwin, J. A.; Vlckova, B.; Andrews, M. P.; Butler, I. S., Langmuir1997, 13, 3744-3751

[33]

Lim, J. S.; Choi, H.; Lim, I. S.; Park, S. B.; Lee, Y. S.; Kim, S. K., J. Phys. Chem. A2009, 113, 10410-10416

[34]

Lim, I. S.; Lim, J. S.; Lee, Y. S.; Kim, S. K., J. Chem. Phys.2007, 126, 034306

[35]

Moskovits, M., Rev. Mod. Phys.1985, 57, 783-826

[36]

Moskovits, M., J. Chem. Phys.1982, 77, 4408

[37]

Kalkar, A. K.; Bhossekar, N. M.; Kshirsagar, S. T., Spectrochim. Acta [A]1989, 45A, 635-641

[38]

Muniz-Miranda, M.; Neto, N.; Sbrana, G., J. Phys. Chem.1988, 92, 954-959

[39]

Wang, Y. F.; Sun, Z. H.; Hu, H. L.; Jing, S. Y.; Zhao, B.; Xu, W. Q.; Zhao, C.; Lombardi, J. R., J. Raman Spectrosc.2007, 38, 34-38

[40]

Park, H. K.; Yoon, J. K.; Kim, K., Langmuir2006, 22, 1626-1629

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (432KB)

1306

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/