Mechanical behavior and wrinkling patterns of phase-separated binary polymer blend film
Xuezhe ZHAO, Shengwei DENG, Yongmin HUANG, Honglai LIU, Ying HU
Mechanical behavior and wrinkling patterns of phase-separated binary polymer blend film
The wrinkling of phase-separated binary polymer blend film was studied through combining the Monte Carlo (MC) simulation for morphologies with the lattice spring model (LSM) for mechanical properties. The information of morphology and structure obtained by use of MC simulation is input to the LSM composed of a three-dimensional network of springs, which allows us to determine the wrinkling and the mechanical properties of polymer blend film, such as strain, stress, and Young’s modulus. The simulated results show that the wrinkling of phase-separated binary polymer blend film is related not only to the structure of morphology, but also to the disparity in elastic moduli between polymers of blend. Our simulation results provide fundamental insight into the relationship between morphology, wrinkling, and mechanical properties for phase-separated polymer blend films and can yield guidelines for formulating blends with the desired mechanical behavior. The wrinkling results also reveal that the stretching of the phase-separated film can form the micro-template, which has a wide application prospect.
polymer blend film / phase separation / mechanical property / wrinkling / lattice spring model
[1] |
Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E., Nat. Mater.2004, 3, 545–550
CrossRef
Pubmed
Google scholar
|
[2] |
Huang, J.; Juszkiewicz, M.; de Jeu, W. H.; Cerda, E.; Emrick, T.; Menon, N.; Russell, T. P., Science2007, 317, 650–653
CrossRef
Pubmed
Google scholar
|
[3] |
Nolte, A. J.; Cohen, R. E.; Rubner, M. F., Macromolecules2006, 39, 4841–4847
CrossRef
Google scholar
|
[4] |
Aamer, K. A.; Stafford, C. M.; Richter, L. J.; Kohn, J.; Becker, M. L., Macromolecules2009, 42, 1212–1218
CrossRef
Pubmed
Google scholar
|
[5] |
Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Nature1998, 393, 146–149
CrossRef
Google scholar
|
[6] |
Chiche, A.; Stafford, C. M.; Cabral, J. T., Soft Matter2008, 4, 2360–2364
CrossRef
Google scholar
|
[7] |
Sun, Y.; Choi, W. M.; Jiang, H.; Huang, Y. Y.; Rogers, J. A., Nat. Nanotechnol.2006, 1, 201–207
CrossRef
Pubmed
Google scholar
|
[8] |
Khang, D. Y.; Jiang, H.; Huang, Y.; Rogers, J. A., Science2006, 311, 208–212
CrossRef
Pubmed
Google scholar
|
[9] |
Hayward, R. C.; Chmelka, B. F.; Kramer, E. J., Macromolecules2005, 38, 7768–7783
CrossRef
Google scholar
|
[10] |
Singamaneni, S.; Tsukruk, V. V., Soft Matter2010, 6, 5681
CrossRef
Google scholar
|
[11] |
Tyagi, S.; Lee, J. Y.; Buxton, G. A.; Balazs, A. C., Macromolecules2004, 37, 9160–9168
CrossRef
Google scholar
|
[12] |
Reiter, J.; Edling, T.; Pakula, T., J. Chem. Phys.1990, 93, 837–844
CrossRef
Google scholar
|
[13] |
Carmesin, I.; Kremer, K., Macromolecules1988, 21, 2819–2823
CrossRef
Google scholar
|
[14] |
Larson, R. G.; Scriven, L. E.; Davis, H. T. J., Chem. Phys.1985, 83, 2411–2420
|
[15] |
Larson, R. G., J. Chem. Phys.1989, 91, 2479–2488
CrossRef
Google scholar
|
[16] |
Buxton, G. A.; Care, C. M.; Cleaver, D. J., Model. Simul. Mater. Sci. Eng.2001, 9, 485–497
CrossRef
Google scholar
|
[17] |
Buxton, G. A.; Balazs, A. C., Macromolecules2005, 38, 488–500
CrossRef
Google scholar
|
[18] |
Shou, Z.; Buxton, G. A.; Balazs, A. C., Compos. Interfaces2003, 10, 343–368
CrossRef
Google scholar
|
[19] |
Buxton, G. A.; Balazs, A. C., Mol. Simul.2004, 30, 249–257
CrossRef
Google scholar
|
[20] |
Ostoja-Starzewski, M.; Sheng, P. Y.; Jasuik, I., Eng. Fract. Mech.1997, 58, 581–606
CrossRef
Google scholar
|
/
〈 | 〉 |