Visible light responsive TiO2 modification with nonmetal elements

Mingce LONG, Weimin CAI

PDF(564 KB)
PDF(564 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (3) : 190-199. DOI: 10.1007/s11458-011-0243-8
REVIEW ARTICLE
REVIEW ARTICLE

Visible light responsive TiO2 modification with nonmetal elements

Author information +
History +

Abstract

Developing visible light responsive (VLR) TiO2 photocatalysts is essential and attractive for the consideration of solar energy utilization. A large amount of work have shown TiO2 modified with several nonmetal elements having VLR performance, although according to DFT calculation, Asahi denied the VLR properties of fluorine, carbon, etc. in doping TiO2. Therefore, the origins of VLR activity desire further delicate discussion. In this mini-review, several strategies for VLR TiO2 modification have been introduced, including N doping or B/N codoping, surface modification with sensitizing matter such as carbonaceous or other organic substances, surface alkoxyls modification via a ligand-to-metal charge transfer (LMCT) process, and enhanced dye sensitization by fluorine modification. Besides doping, there are much more approaches to fabricate VLR TiO2 modified with nonmetal elements. However, it is still in demand to explore new methods to obtain more stable and efficient VLR TiO2 for practical application.

Keywords

visible light / modified / doping / TiO2 / photocatalysis / sensitization / ligand-to-metal charge transfer

Cite this article

Download citation ▾
Mingce LONG, Weimin CAI. Visible light responsive TiO2 modification with nonmetal elements. Front Chem Chin, 2011, 6(3): 190‒199 https://doi.org/10.1007/s11458-011-0243-8

References

[1]
Long, M. C.; Cai, J.; Cai, W. M.; Chen, H.; Chai, X. Y., Prog. Chem.2006, 18, 1065–1075
[2]
Ohtani, B., Chem. Lett.2008, 37, 217–229
CrossRef Google scholar
[3]
Anpo, M., Bull. Chem. Soc. Jpn.2004, 77, 1427–1442
CrossRef Google scholar
[4]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Science2001, 293, 269–271
CrossRef Pubmed Google scholar
[5]
Irie, H.; Washizuka, S.; Yoshino, N.; Hashimoto, K., Chem. Commun. (Camb.)2003, 1298–1299
CrossRef Pubmed Google scholar
[6]
Irie, H.; Watanabe, Y.; Hashimoto, K., J. Phys. Chem. B2003, 107, 5483–5486
CrossRef Google scholar
[7]
Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D. Jr; Yates, J. T., J. Phys. Chem. B2004, 108, 52–57
CrossRef Google scholar
[8]
Suda, Y.; Kawasaki, H.; Ueda, T., Thin Solid Films2004, 453–454, 162–166
CrossRef Google scholar
[9]
Chambers, S. A.; Cheung, S. H.; Shutthanandan, V.; Thevuthasan, S.; Bowman, M. K.; Joly, A. G., Chem. Phys.2007, 339, 27–35
CrossRef Google scholar
[10]
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X., J. Phys. Chem. B2004, 108, 1230–1240
CrossRef Google scholar
[11]
Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L., Nano Lett.2003, 3, 1049–1051
CrossRef Google scholar
[12]
Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S., Appl. Catal. B2003, 42, 403–409
CrossRef Google scholar
[13]
Wang, Z. P; Cai, W. M.; Hong, X. T.; Zhao, X.; Xu, F.; Cai, C. G., Appl. Catal. B2005, 57, 223–231
CrossRef Google scholar
[14]
Tokudome, H.; Miyauchi, M., Chem. Lett.2004, 33, 1108–1109
CrossRef Google scholar
[15]
Matsumoto, T.; Iyi, N.; Kaneko, Y.; Kitamura, K.; Ishihara, S.; Takasu, Y.; Murakami, Y., Catal. Today2007, 120, 226–232
CrossRef Google scholar
[16]
Yin, S.; Aita, Y.; Komatsu, M.; Wang, J. S.; Tang, Q.; Sato, T., J. Mater. Chem.2005, 15, 674–682
CrossRef Google scholar
[17]
Cong, Y.; Zhang, J.; Chen, F.; Anpo, M., J. Phys. Chem. C2007, 111, 6976–6982
CrossRef Google scholar
[18]
Yin, S.; Zhang, Q.; Saito, F.; Sato, T., Chem. Lett.2003, 32, 358–359
CrossRef Google scholar
[19]
Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G., J. Am. Chem. Soc.2006, 128, 15666–15671
CrossRef Pubmed Google scholar
[20]
Lee, J. Y.; Park, J.; Cho, J. H., Appl. Phys. Lett.2005, 87, 011904
CrossRef Google scholar
[21]
Long, M. C.; Cai, W. M.; Wang, Z. P.; Liu, G. Z., Chem. Phys. Lett.2006, 420, 71–76
CrossRef Google scholar
[22]
Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffmann, M. R., J. Phys. Chem. B2004, 108, 17269–17273
CrossRef Google scholar
[23]
Serpone, N., J. Phys. Chem. B2006, 110, 24287–24293
CrossRef Pubmed Google scholar
[24]
Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G. Q.; Cheng, H.M., Angew. Chem. Int. Ed.2008, 47, 4516–4520.
CrossRef Google scholar
[25]
Li, J.; Xu, J.; Dai, W.L.; Li, H.; Fan, K., Appl. Catal. B2008, 82, 233–243
CrossRef Google scholar
[26]
Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G., J. Am. Chem. Soc.2004, 126, 4782–4783.
CrossRef Pubmed Google scholar
[27]
Liu, H.; Gao, L., J. Am. Ceram. Soc.2004, 87, 1582–1584
CrossRef Google scholar
[28]
Xu, J.H.; Li, J.; Dai, W.L.; Cao, Y.; Li, H.; Fan, K., Appl. Catal. B2008, 79, 72–80
CrossRef Google scholar
[29]
Ozaki, H.; Iwamoto, S.; Inoue, M., J. Phys. Chem. C2007, 111, 17061–17066
CrossRef Google scholar
[30]
Xie, Y.; Li, Y. Z.; Zhao, X. J., J. Mol. Catal. Chem.2007, 277, 119–126
CrossRef Google scholar
[31]
Wu, P. G.; Xie, R. C.; Imlay, K.; Shang, J. K., Environ. Sci. Technol.2010, 44, 6992–6997
CrossRef Pubmed Google scholar
[32]
Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B1998, 102, 5845–5851
CrossRef Google scholar
[33]
Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N., Environ. Sci. Technol.1998, 32, 2394–2400.
CrossRef Google scholar
[34]
Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Jr, Science2002, 297, 2243–2245
CrossRef Pubmed Google scholar
[35]
Toyoda, M.; Yano, T.; Tryba, B.; Mozia, S.; Tsumura, T.; Inagaki, M., Appl. Catal. B2009, 88, 160–164
CrossRef Google scholar
[36]
Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F., Appl. Catal. B2001, 32, 215–227
CrossRef Google scholar
[37]
Zhang, L.W.; Fu, H.B.; Zhu, Y.F., Adv. Funct. Mater.2008, 18, 2180–2189
CrossRef Google scholar
[38]
Chen, C.; Long, M. C.; Zeng, H.; Cai, W. M.; Zhou, B. X.; Zhang, J. Y.; Wu, Y. H.; Ding, D. W.; Wu, D. Y., J. Mol. Catal. Chem.2009, 314, 35–41
CrossRef Google scholar
[39]
Mitoraj, D.; Kisch, H., Angew. Chem. Int. Ed.2008, 47, 9975–9978
CrossRef Google scholar
[40]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., Nat. Mater.2009, 8, 76–80
CrossRef Pubmed Google scholar
[41]
Wu, Y. H.; Long, M. C.; Chen, C.; Cai, W. M., Advanced Materials Research2011, 214, 406–411
CrossRef Google scholar
[42]
Kim, S.; Choi, W., J. Phys. Chem. B2005, 109, 5143–5149
CrossRef Pubmed Google scholar
[43]
Jiang, J.; Long, M.; Wu, D.; Cai, W., J. Mol. Catal. Chem.2011, 335, 97–104
CrossRef Google scholar
[44]
Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N., Chem. Phys. Lett.2005, 401, 579–584
CrossRef Google scholar
[45]
Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J., Langmuir2008, 24, 7338–7345.
CrossRef Pubmed Google scholar
[46]
Jiang, J. J.; Long, M. C.; Wu, D. Y.; Cai, W. M., Acta Phys Chim Sin2011, 27, 1149–1156

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 20907031), the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Dong Hua University (Grant No. LK0907) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090073120042).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(564 KB)

Accesses

Citations

Detail

Sections
Recommended

/